Toucan Server

Windows COM Manual (Beta)

KODAK Toucan Server COM

for

Windows 9X and NT

Operating Systems

Table of Contents

Overview………………………………………………………………….
03

Installation………………………………………………………………..
06

Limitations………………………………………………………………..
07

Functions…………………………………………………………………
08

Application Program Interface.………………………………………...
09

Setting the Image Size………………………………………………….
14

Setting the Input LUT Page…………………………………………….
15

Selecting an Input Pixel Format………………………………………..
16

Choosing an Input Pixel Depth…………………………………………
17

Setting the Input Byte Order……………………………………………
18

Selecting an Input Line Format…………………………………………
19

Choosing the Input Color Phase……………………………………….
20

Processing the Color Image…………………………………………….
21

Adjusting the Black Setup.………………………………………………
22

Choosing a Clip Mode……………………………………………….…..
23

Setting the Sharpening Gain……………………………………………
24

Setting Edge Enhancement…………………………………………….
25

Color Transform………………………………………………………….
26

Setting White Balance……………………………………………….….
27

Enabling Automatic White Balance..………………………………….
29

Choosing a Color Correction Matrix…………………………………..
30

Verifying a Custom Color Correction Matrix………………………….
31

Setting Hue and Saturation….…………………………………………
32

Checking Channel Gain………....……………………………………...
34

Setting the Output RGB Order………………………………………...
35

Selecting an Output Mode………………………………………………
36

Choosing an Output Pixel Format………………………………………
37

Getting Hardware Accelerator Device Information……………………
38

Enabling the Optional Hardware Accelerator………………………….
39

Choosing a Future Configuration……………………………………….
40

Resetting the Optional Hardware Accelerator………….……………...
41

Setting Gamma Correction………………………………………………. 42

Overview

Introduction

The Toucan Server software provides a means for the conversion of 8-bit Bayer-encoded color images to 24-bit color images. The Toucan Server software is used in an IBM-PC compatible system running Microsoft Windows NT4.0, Windows 95 or Windows 98 operating systems. An optional PCI-bus hardware accelerator card is available for speeding up the processing of color images by several orders of magnitude. At this time, a device driver is available for the hardware accelerator only for the Windows NT operating system. The Toucan Server software auto-detects for the hardware accelerator and uses it whenever it is available. This feature can be over-ridden by the programmer via the function call UseHardwareI().

The Toucan Server software is written as a Component Object Module (i.e. COM), exported as a Dynamic Link Library (DLL) and is used as an in-process server. The Toucan Server features a dual interface (IDispatch and Custom). The IDispatch interface is used as a standard interface by many programming languages such as Visual Basic. The Toucan Server exposes a Custom interface, IEKQColorAdapter, for processing the Bayer-encoded images. This interface exposes a number of methods for the control and processing of color images which are described below.

Being a COM, Toucan Server is language independent and can thus be used with applications that support COM, such as Visual C++, Visual Basic, Java, etc.

A type library, ToucanServer.tlb, is also provided to simplify interfacing to the ToucanServer.dll and acts like a header file and defines the function prototypes as used in the C and C++ programming languages.

A definitions.h file is also provided that defines the typedef’s for many of the constants and parameters used in the interface.

The Toucan Server DLL is dynamically, rather than statically, linked with other required system DLL’s. This implies that the user’s operating system must have those required DLL’s available for use. Also, they must be the correct version. The required system DLL’s are also supplied in a separate folder for copying over to the user’s system sub-directory.

Prior to using the Toucan Server DLL, it must be registered in the user’s system’s Registry. This is accomplished by using the system’s application Regsrv32.exe. Standard COM techniques are used for loading and acquiring a pointer to the interface. C++ code snippets are presented below that illustrate how this can be accomplished.

This installation of the software and optional hardware is explained further in the Installation section below.

Processing

Toucan Server processes the color images captured from a variety of Kodak Motion Analysis Systems color cameras. Processing of these images is necessary to produce a full 24 bit color image. The color cameras generate color images that are encoded in a Bayer format with one primary color per 8 bit pixel, either red, green, or blue. This is a direct result of the image sensor having a color filter array (cfa) superimposed over the light sensitive photosites so that only one of the three primary colors are read and recorded for each pixel. The remaining two primary colors for each pixel must then be estimated via a proprietary spatial interpolation method. Other image processing is also required to fully process the image to the best looking result.

Toucan Server processes the Bayer images using the following steps either in software or with the optional hardware accelerator PCI-bus card: white balance/black level adjustment, spatial interpolation, color correction, sharpening and gamma correction. Each of these steps is explained briefly.

White Balance & Black Level Adjustment

The image sensor’s pixels are sensitive to red, green or blue light. However, the sensitivities are not “matched” and thus require a relative gain adjustment. The amount of white balance adjustment also depends on the type of light source used, since most light source’s do not produce equal amounts of red, green, and blue light as seen by the image sensor. The white balance processing consists in adjusting the gains of every red, green and blue pixel in the image so that a neutral gray is rendered as gray and neutral.

Most color cameras produce digital images with a non-zero black level. The black level must be adjusted out to make the most pleasing image. The estimated black level is subtracted from every pixel in the image.

Spatial Interpolation

Every pixel out of the camera only has one of the three color components. The other two components must be estimated via a spatial interpolation algorithm. The spatial interpolation algorithm is designed to preserve as much detail in the processed color image as is possible. Basically, the algorithm works by looking at the neighboring pixels and estimating the missing color components from what is observed in the neighborhood.

Color Correction
The colors that the camera’s image sensor “sees” are not accurate due to imperfections in the spectral sensitivities of the camera. Thus, the colors must be corrected so that they more accurately reproduce the original scene’s colors. This is accomplished by applying a 3x3 color correction matrix to every pixel in the image. This tends to make the reproduced image more colorful and more accurately renders the original scene.

Sharpening
The lens that is used with the camera tends to blur or degrade the perceived sharpness of the image. The finite aperture of the light sensitive pixels also contributes to this effect. To compensate for this degradation, the image is “crispened” digitally. This is done via a technique known as “unsharp masking”. This is done by digitally blurring the luminance signal of the image slightly, subtracting this blurred version of the image from the original image and applying a boost to the resulting high frequency (fine detail) image. This boosted fine detail image is then added back to the original image. This results in an enhanced, sharpened, image.

Gamma Correction
The tonal display characteristics of conventional CRT color monitors are highly non-linear. That is, the intensity varies approximately as the square of the applied voltage. This results in a highly distorted tone scale. That is, the image appears darker overall and not much detail is seen in the shadows. This can be compensated for in many ways. The best way is to correct for the effect in

the video display card by loading an inverse gamma correction table in the RAM-DAC’s. Sometimes this is not always possible. Thus, Toucan Server provides the option of gamma correcting the image on a pixel by pixel basis so that it will look pleasing when displayed on an ungamma corrected monitor.

Parameters
A number of parameters are provided to control the color processing. These parameters are set via the IEKQCAdapter interface methods of the Toucan Server. The bulk of this document describes how to control or properly set these parameters to provide optimal color processing of images.

Installation

Installing the Optional Printed Circuit Card

The optional hardware accelerator card is installed in any available PCI card connector configured for 5 volt cards. The hardware accelerator card is keyed so that it will not plug into a PCI slot setup for 3.3 volt printed circuit boards.

Installing the Optional Windows NT Driver
If you are installing the hardware accelerator card (Windows NT only) open the folder named Drivers and then double click on the install.bat file. This will place the kodakcp.sys driver in the correct folder and update the Windows NT Registry.

Installing the Toucan Server DLL
Copy the ToucanServer.dll to you System subdirectory. Then run Regsrv32.exe to register the Toucan Server in the system’s Registry.

Toucan Server is dynamically linked with other system DLL’s and requires the correct version of these DLL’s to be present in order to properly run. The required system DLL’s are provided in the folder marked System DLL’s. Check to make sure that you have the correct version of these DLL’s on your system. If not, then copy them over to your appropriate system subdirectory.

Limitations
The current release of the Toucan Server software is in the Beta phase. The hardware accelerator option is not yet fully supported. The EnableAutoWhiteBalance() method is still under development. Some bugs (i.e. “undocumented features”) probably exist and will be resolved as testing continues.

Functions

Toucan Server provides a number of methods via the IEKQCAdapter interface that allow an application program to easily control the processing of Bayer-encoded color images.

The Toucan Server provides the capabilities to set and get the current settings for the following parameters:

· Black Setup

· Edge Enhancement

· Color Phase

· Input Byte Order

· RGB Order

· Clip Mode

· Sharpening Gain

· Line Format

· Output Mode

· Output Pixel Format

· Future Configurations

· Image Size

· White Balance

· Color Correction Matrix

· Device Information

· Input Pixel Depth

· Input Pixel Format

· Input LUT Page

· Hue And Saturation

· Color Transform

· Channel Gain

Application Program Interface

Overview

Toucan Server exports a COM interface called IEKQColorAdapter. The IEKQColorAdapter interface is a dual interface. It is derived from IDispatch and thus can be easily accessed from applications written in Visual Basic or Java Script. ToucanServer also supports a custom interface via the IUnknown->QueryInterface() method which can be conveniently accessed from applications written in the C++ programming language.

Type Library

As an aid to rapidly developing applications that interface to the Toucan Server, a Type Library ToucanServer.tlb is provided. This type library acts as a header file in the sense that it declares the function prototypes to the various methods that compose IEKQColorAdapter.
Methods

The rest of this document describes the member functions that constitute the interface to the Toucan Server:

Every one of the methods described below conforms to the Microsoft Interface Description Language (IDL) rules and nomenclature. Thus, the method’s return type is always an HRESULT. Also, all method arguments must be declared as in, out, or retval. Refer to Microsoft’s IDL for further clarification of these rules.

Returned Values

Many of the methods return a value when called or require various typedef’d parameters. The declaration and definition of these parameters are contained in file: definitions.h provided and listed below. Refer to this file (or include it if programming in C++) for the definitions of these parameters.

// definitions for parameters used in CEKQColorAdapter.

// EDGE ENHANCEMENT

#define EKQCA_NORMAL_EDGE_ENHANCEMENT 0

#define EKQCA_MEDIUM_EDGE_ENHANCEMENT 1

// COLOR PHASE

#define EKQCA_RED_PIXEL
0

#define EKQCA_GREEN_ON_RED
1

#define EKQCA_BLUE_PIXEL
2

#define EKQCA_GREEN_ON_BLUE
3

// INPUT BYTE ORDER

#define EKQCA_LSB_TO_MSB 0

#define EKQCA_MSB_TO_LSB 1

// RGB ORDER

#define EKQCA_RGB 0

#define EKQCA_GRB 1

#define EKQCA_RBG 2

#define EKQCA_BRG 3

#define EKQCA_BGR 4

#define EKQCA_GBR 5

// CLIP MODE

#define EKQCA_CLIP_OFF

0

#define EKQCA_CLIP_ON_TWO
1

// SHARPENING GAIN

#define EKQCA_SHARPENING_GAIN_0_0 0

#define EKQCA_SHARPENING_GAIN_0_5 1

#define EKQCA_SHARPENING_GAIN_1_0 2

#define EKQCA_SHARPENING_GAIN_1_5 3

// LINE FORMAT

#define EKQCA_UNPACKED_LINES
0

#define EKQCA_PACKED_LINES
1

// OUTPUT MODE

#define EKQCA_NORMAL_IMAGE
0

#define EKQCA_EDGE_GRADIENT_IMAGE
1

// INPUT & OUTPUT PIXEL FORMAT

#define EKQCA_UNPACKED_LSB_ALIGN
0

#define EKQCA_UNPACKED_MSB_ALIGN
1

#define EKQCA_PACKED_LSB_ALIGN
2

// COLOR CORRECTION MATRIX and LightSources

#define EKQCA_UNITY

0

#define EKQCA_HRC

1

#define EKQCA_RO

2

#define EKQCA_ES_1_0

3

#define EKQCA_ES_310

4

#define EKQCA_KIMC_1_6i

5

#define EKQCA_TUNGSTEN_WITH_METAL
0

#define EKQCA_TUNGSTEN_WITH_DICHROIC
1

#define EKQCA_METAL_HALIDE

2

#define EKQCA_XENON

3

// INPUT PIXEL DEPTH

#define EKQCA_8_BITS

0

// LUT Page

#define EKQCA_LINEAR_PAGE

0

///

// structures.

typedef struct

{

 char szFIFODepth[4];

 char szBoardRevision[16];

 char szBoardReleaseDate[32];

 char szBoardMinDLLRevisionNeeded[16];

 char szBoardAssemblyNumber[16];

 char szDLLRevision[16];

 char szDLLReleaseDate[32];

} EKQCA_DEVICEINFO;

///

///

// status codes returned from Interface routines.

#define EKQCA_SUCCESS 1

#define EKQCA_DEVICE_NOT_FOUND

0x80000000

#define EKQCA_UNABLE_TO_READ_DEVICE
0x80000001

#define EKQCA_UNABLE_TO_WRITE_DEVICE
0x80000002

#define EKQCA_PARAMS_OUT_OF_RANGE
0x80000003

#define EKQCA_INVALID_PARAMS

0x80000004

#define EKQCA_ATTENUATED

0x80000005

#define EKQCA_UNABLE_TO_ACQUIRE_DEVICE
0x80000006

#define EKQCA_INCORRECT_DLL_VERSION
0x80000007

#define EKQCA_UNABLE_TO_ALLOCATE_MEMORY
0x80000008

C++ Programming Aids
The application that you write must find Toucan Server in the System’s Registry, load it, and create or attach to the object and then acquire a handle to the IEKQColorAdapter interface. Some Visual C++ example code is provided below to aid you in performing the above tasks.

Connecting to Toucan Server:
if (!AfxOleInit())

{

AfxMessageBox("Can’t Initialize OLE");

// abort

return;

}

// Create the Toucan Server object that we'll drive

// through OLE Automation

COleException e;

CLSID clsid;

if (CLSIDFromProgID(OLESTR("ToucanServer.EKQColorAdapter"), &clsid) !=

NOERROR)

{

AfxMessageBox("Can't Find ToucanServer in Registry");

// abort

return;

}

// try to get an active EKQColorAdapter before creating a new one

LPUNKNOWN lpUnk;

LPDISPATCH lpDispatch;

if (GetActiveObject(clsid, NULL, &lpUnk) == NOERROR)

{

HRESULT hr = lpUnk->QueryInterface(IID_IDispatch, (LPVOID*) &lpDispatch);

lpUnk->Release();

if (hr == NOERROR)

m_Toucan.AttachDispatch(lpDispatch,TRUE);

}

// if not a dispatch ptr attached yet, need to create one

if (m_Toucan.m_lpDispatch == NULL &&

!m_Toucan.CreateDispatch(clsid, &e))

{

AfxMessageBox("Can't Load ToucanServer COM");

// abort

return;

}

In some of the methods that the IEKQColorAdapter interface provides, the data must be packed away as a Variant containing a SafeArray of values. Some example code is provided below to aid you in creating, reading from and writing to a Variant that has a SafeArray of data.

Creating, Reading and Writing to a Variant’s SafeArray:
VARIANT* CFAImage::CreateImageVariant(void)

{

 // Create the image Variant that contains a Safearray of (byte-sized) binary

 // image data.

 // The image data are passed over to the CEKQColor Adapter object via the

 // IDispatch interface to the ColorizeImage() method.

 long lCount;

 // we must now initialize it

 VariantInit(&m_ImageVariant);

 // set the variant type to an array of unsigned chars (i.e. Bytes)

 m_ImageVariant.vt = VT_ARRAY | VT_UI1;

 // set up the bounds structure

 SAFEARRAYBOUND rgsabound[1];

 rgsabound[0].cElements = m_lNumberOfPixels;

 rgsabound[0].lLbound = 0;

 // Create an OLE SafeArray

 m_ImageVariant.parray = SafeArrayCreate(VT_UI1, 1, rgsabound);

 if (m_ImageVariant.parray != NULL)

 {

 Byte * pArrayData = NULL;

 // Get a safe pointer to the array

 SafeArrayAccessData(m_ImageVariant.parray, (void**) &pArrayData);

 // copy the cfaImagePtr image data to the variant's safearray

 for (lCount = 0; lCount < m_lNumberOfPixels; lCount++)

 pArrayData[lCount] = (BYTE) cfaImagePtr[lCount];

 // Unlock the variant data

 SafeArrayUnaccessData(m_ImageVariant.parray);

 }

 m_bVariantExists = TRUE;

 return &m_ImageVariant;

}

Setting the Image Size

HRESULT SetImageSize([in] int iWidth, [in] int iHeight, [out, retval] piStatus);

Parameters

iWidth
The width of the image in pixels. iWidth ranges from 21 to 5048.
iHeight
The height of the image in pixels.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iWidth is not within the range mentioned above.

HRESULT GetImageSize([out] int* piWidth, [out] int* piHeight, [out, retval] int* piStatus);

Parameters

piWidth
A pointer to an integer to store the width of the image in pixels.
piHeight
A pointer to an integer to store the height of the image in pixels.

Return Value

piStatus

EKQCA_SUCCESS
if the function is successful.

EKQCA_INVALID_PARAMS
if either piWidth and/or piHeight is NULL.

Remarks

Color images are processed on a line by line basis and can support images of any height. The image width must be between 21 and 5048 pixel. The default height and width are 384 and 512 pixels respectively.

Setting the Input LUT Page

HRESULT SetInputLUTPage([int] int iInputLUTPage, [out, retval] int* piStatus);

Parameter

iInputLUTPage
InputLUTPage setting is a stub in this version.

 iInputLUTPage defaults to EKQCA_LINEAR_PAGE.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iInputLUTPage is not EKQCA_LINEAR_PAGE.

HRESULT GetInputLUTPage([out, retval] int* piInputLUTPage);

Return Value

piInputLUTPage
pointer to the current Input LUT Page setting.

Remarks

Stub functions have been included as space holders for possible future product enhancement. Including stub function calls in your application now will make future upgrades easier to implement.

Selecting an Input Pixel Format

HRESULT SetInputPixelFormat([in] int iPixelFormat, [out, reval] int* piStatus);

Parameter

iPixelFormat
Input Pixel Format setting is a stub in this version.

iInputPixelFormat defaults to EKQCA_UNPACKED_LSB_ALIGN.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iPixelFormat is not EKQCA_UNPACKED_LSB_ALIGN

HRESULT GetInputPixelFormat([out, retval] int* piPixelFormat);

Return Value

piPixelFormat
pointer to the current Input Pixel Format setting.

Remarks

Stub functions have been included as space holders for possible future product enhancement. Including stub function calls in your application now will make future upgrades easier to implement.

Choosing an Input Pixel Depth

HRESULT SetInputPixelDepth([in] int iInputPixelDepth, [out, retval] int* piStatus);

Parameter

iInputPixelDepth
Input Pixel Depth is just a stub in this version.

iInputPixelDepth defaults to EKQCA_8_BITS.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iInputPixelDepth is not EKQCA_8_BITS.

HRESULT GetInputPixelDepth([out, retval] int* piInputPixelDepth);

Return Value

piInputPixelDepth
pointer to the current Input Pixel Depth setting.

Remarks

Stub functions have been included as space holders for possible future product enhancement. Including stub function calls in your application now will make future upgrades easier to implement.

Setting the Input Byte Order

HRESULT SetInputByteOrder([in] int iInputByteOrder, [out, retval] int* piStatus);

Parameter

iInputByteOrder
Input Byte Order setting. iInputByteOrder can be any one of the following:

· EKQCA_LSB_TO_MSB

· EKQCA_MSB_TO_LSB
Return Value

piStatus

EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iInputByteOrder is not one of the legal values mentioned above.

HRESULT GetInputByteOrder([out, retval] int* piInputByteOrder);

Return Value

piInputByteOrder
pointer to the current Input Byte Order setting.

Remarks

Given an input word of 0x33221100, EKQCA_LSB_TO_MSB will sequence the input data as 0x00, 0x11, 0x22, 0x33. Given the same input, EKQCA_MSB_TO_LSB will sequence the input data as 0x33, 0x22, 0x11, 0x00. EKQCA_LSB_TO_MSB is the default value.

Selecting an Input Line Format

HRESULT SetInputLineFormat([in] int iLineFormat, [out, retval] int* piStatus);

Parameter

iLineFormat
Line Format setting. iLineFormat can be any one of the following:

· EKQCA_UNPACKED_LINES

· EKQCA_PACKED_LINES

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iLineFormat is not one of the legal values mentioned above.

HRESULT GetInputLineFormat([out, retval] int* piLineFormat);

Return Value

piLineFormat
pointer to the current Input Line Format setting.

Remarks

The default setting is EKQCA_UNPACKED_LINES. As an example, consider a line length of three, with three lines of data, with raster ordered pixel values of 0x00, 0x11, 0x22, …, 0x88. Assuming that the input byte order is set as MSB to LSB, input unpacked lines are ordered as follows: 0x001122--, 0x334455--, 0x667788--, and so on. For EKQCA_PACKED_LINES, lines are ordered as follows: 0x00112233, 0x44556677, and so on.

Choosing the Input Color Phase

HRESULT SetColorPhase([in] int iColorPhase, [out, retval] int* piStatus);

Parameter

iColorPhase
Color Phase setting. iColorPhase can be any one of the following:

· EKQCA_RED_PIXEL

· EKQCA_GREEN_ON_RED

· EKQCA_BLUE_PIXEL

· EKQCA_GREEN_ON_BLUE

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iColorPhase is not one of the legal values mentioned above.

HRESULT GetColorPhase([out, retval] int* piColorPhase);

Return Value

piColorPhase
pointer to the current Color Phase setting.

Remarks

The bayer-encoded color-filter-array pattern alternates between green-red rows and blue-green rows. The ToucanServer requires a knowledge of the color of the first pixel in order to correctly decode the colors for the fully processed image. A green pixel on a green-red row is the assumed default color phase.

Processing the Color Image

HRESULT ColorizeImage([in] VARIANT* pvCFAImage, [in, out] VARIANT* pvColorImage, [out, retval] int* piStatus);

Parameters

pvCFAImage
A pointer to a Variant containing a SafeArray of bytes containing the CFA (Color Filter Array) image to colorize. The pixel dimensions of the image must match that set with SetImageSize().

pvColorImage
A pointer to a Variant containing a SafeArray of bytes that will contain the fully processed color image. The buffer size, in bytes, must be at least 3 times the number of pixels of the CFA image if Output Packed Pixels is set and at least 4 times the number of pixels of the CFA image if Output Packed Pixels is not set.

Return Value

piStatus
 EKQCA_SUCCESS

if the function is successful.

 EKQCA_INVALID_PARAMS

if either pvCFAImage or pvColorImage is NULL.

 EKQCA_UNABLE_TO_READ_DEVICE
if a read of one of the h/w accelerator registers failed.
 EKQCA_UNABLE_TO_WRITE_DEVICE
if a write to one of the h/w accelerator registers failed.

Remarks

 The image will be processed either in software or in hardware via the optional hardware accelerator PCI bus board. Results will be identical in either case, the hardware accelerator permits faster processing of the images.

Adjusting the Black Setup

HRESULT SetBlackSetup([in] int iBlackSetup, [out, retval] int* piStatus);

Parameter

iBlackSetup
Black Setup setting. iBlackSetup ranges from 0 to 127.

Return Value

piStatus:

EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iBlackSetup is not within the range mentioned above.

HRESULT GetBlackSetup([out, retval] int* piBlackSetup);

Return Value

piBlackSetup
a pointer to the current BlackSetup setting.

Remarks

This function shifts the image’s black level towards white or black and should correspond to the black level setting of the camera. A black level setting of 40 is the default recommended setting.

Choosing a Clip Mode

HRESULT SetClipMode([in] int iClipMode, [out, retval] int* piStatus);

Parameter

iClipMode
Clip Mode setting. iClipMode can be any one of the following:

· EKQCA_CLIP_OFF

· EKQCA_CLIP_ON_TWO

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iClipMode is not one of the legal values mentioned above.

HRESULT GetClipMode([out, retval] int* piClipMode);

Return Value

piClipMode
pointer to the current Clip Mode setting.

Remarks

When the clip mode is set to EKQCA_CLIP_ON_TWO, the third color is forced to 255 when any two colors are saturated (reach a value of 255). Typically red and green will saturate first, and then the clip function creates a neutral white clip by forcing blue to 255. The default value is EKQCA_CLIP_OFF.

Setting the Sharpening Gain

HRESULT SetSharpeningGain([in] int iSharpeningGain, [out, retval] int* piStatus);

Parameter

iSharpeningGain
Sharpening Gain setting. iSharpeningGain can be any one of the following:

· EKQCA_SHARPENING_GAIN_0_0

· EKQCA_SHARPENING_GAIN_0_5

· EKQCA_SHARPENING_GAIN_1_0

· EKQCA_SHARPENING_GAIN_1_5

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iSharpeningGain is not one of the legal values mentioned above.

HRESULT GetSharpeningGain([out, retval] int* piSharpeningGain);

Return Value

piSharpeningGain
pointer to the current Sharpening Gain setting.

Remarks

The perceived sharpness of an image is enhanced by increasing the contrast of the edges of the objects in an image. This is done by extracting the high frequency information from the luminance signal of the image. The high frequency component of the image is gained up by the Sharpening Gain and then added back to the original image. The sharpening gain controls the amount of the high frequency detail that is added back to the original image. The default setting is EKQCA_SHARPENING_GAIN_1_0.

Setting Edge Enhancement

HRESULT SetEdgeEnhancement([in] int iEdgeEnhancement, [out, retval] int* piStatus);

Parameter

iEdgeEnhancement
Edge Enhancement setting. iEdgeEnhancement can be any one of the following:

· EKQCA_NORMAL_EDGE_ENHANCEMENT

· EKQCA_MEDIUM_EDGE_ENHANCEMENT

Return Value

piStatus:

EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iEdgeEnhancement is not one of the legal values mentioned above.

HRESULT GetEdgeEnhancement([out, retval] int* piEdgeEnhancement);

Return Value

piEdgeEnhancement
pointer to the current Edge Enhancement setting.

This function operates on the detail signal that is summed back in with the digital image data to improve the perceived sharpness of the image. Both the low amplitude and the high amplitude components are suppressed in the detail signal when EKQCA_MEDIUM_EDGE_ENHANCEMENT is used. Eliminating low amplitude detail cores out the much of the noise in the image, and suppressing high amplitude detail prevents over enhancement of high contrast edges. When edge enhancement is set to EKQCA_NORMAL_EDGE_ENHANCEMENT only the low amplitude information is suppressed in the detail signal.

Color Transform

HRESULT SetColorTransform([in] int iColorSpace, [out, retval] int* piStatus);

Parameters

iColorSpace
Color Space setting is a stub in this version.

 iColorSpace defaults to EKQCA_RGB.
Return Value

piStatus
EKQCA_SUCCESS

if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iColorSpace is not EKQCA_RGB.

EKQCA_ATTENUATED

if the channel gains are attenuated.

HRESULT GetColorTransform([out, retval] int* piColorSpace);

Return Value

piColorSpace
pointer to the current Color Transform setting.

Remarks

Stub functions have been included as space holders for possible future product enhancement. Including stub function calls in your application now will make future upgrades easier to implement.

Setting White Balance

HRESULT SetWhiteBalance([in] float fRed, [in] float fGreen, [in] float fBlue, [out, retval] int* piStatus);

HRESULT SetWhiteBalance2([in] VARIANT vWhiteBalance, [out, retval] int* piStatus);

Parameters

fRed, fGreen, and fBlue
The relative pixel values for the Red, Green, and Blue components.
vWhiteBalance
A Variant containing a SafeArray of 3 floats indicating the relative pixel values for the Red, Green, and Blue components. The first element is Red, the second Green, and the third Blue.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_INVALID_PARAMS
if vWhiteBalance contains NULL data.

EKQCA_ATTENUATED
if the channel gains are attenuated by the hardware accelerator.

HRESULT GetWhiteBalance([out] float* pfRed, ([out] float* pfGreen, ([out] float* pfBlue, [out, retval] int* piStatus);

HRESULT GetWhiteBalance2([in, out] VARIANT* pvWhiteBalance, [out, retval] int* piStatus);

Parameters

pfRed, pfGreen, and pfBlue
Pointers to variables of type floats which will hold the values returned.

pvWhiteBalance
A pointer to a Variant containing a SafeArray of 3 floats to hold the relative pixel values for the Red, Green, and Blue components. The first element is Red, the second Green, and the third Blue.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_INVALID_PARAMS
if either pfRed, pfGreen, pfBlue, or pvWhiteBalance is NULL.

Remarks

The spectral nature of different light sources (e.g. daylight, tungsten, fluorescent) can vary considerable. Unfortunately, unlike the human visual system, digital color cameras can not easily adapt to varying light sources. In addition, the red, green and blue pixel sites in a digital color camera’s sensor have different sensitivities to light. The combination of varying spectral power and color channel sensitivity implies that scenes must be “white balanced”. That is, the relative

gains of the red, green and blue channels must be properly adjusted so that grays reproduce as grays.

The SetWhiteBalance routines permit the loading of red, green and blue code values that represents how the digital color camera “sees” a gray area in the scene under a particular illuminant. This information is then used to compute the relative gains to adjust future images that are to be processed so that grays are reproduced as a gray.

It is up to the user to properly determine the correct white balance coefficients. One way is by placing a gray card or other gray object in the scene under the illuminant of interest and capturing an image. The average red, green, and blue code values can then be determined and downloaded via the SetWhiteBalance() routines. This method will produce the optimal result.

Another method, EnableAutoWhiteBalance() is currently under development wherein the goal is reproduce grays acceptably well under many typical imaging situations.

Enabling Automatic White Balance

HRESULT EnableAutoWhiteBalance([[in] BOOL _bDoAutoWB, [out, retval] int* piStatus);

Parameters

_bDoAutoWB
Boolean to select use of automatic white balance

_bDoAutoWB defaults to FALSE .
Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if _bDoAutoWB is out of range.

Remarks
This routine permits the use of an automatic adjustment of the white balance on the next image to be processed. The white balance of the scene is adjusted automatically by computing a variety of statistics from the scene and applying an algorithm to estimate the proper settings. The algorithm is not perfect and may not perform well under many circumstances. More accurate results can be obtained by the inclusion of a known gray (neutral) area in the scene and using the SetWhiteBalance() method to set the white balance.

Once the white balance settings are determined for a particular scene, the Toucan Server DLL will remember these values. Thus EnableWhiteBalance() can be disabled once suitable values have been determined. These white balance values will then be applied to all future images until the ToucanServer DLL is instructed to do otherwise.

The algorithms for white balance adjustment are currently under development and improvements will be released in future versions of the ToucanServer DLL.

Choosing a Color Correction Matrix

HRESULT SetColorCorrectionMatrix([in] VARIANT vMatrix, [out, retval] int* piStatus);

HRESULT SetColorCorrectionMatrix2([in] int iCameraType, [in] int iLightSource, [out, retval] int* piStatus);

Parameters

vfMatrix
A VARIANT containing a SafeArray of nine floats that represents the color correction matrix. The matrix is 3X3 in size.
iCameraType
A predefined set of color camera types. iCameraType can be any one of the following:

· EKQCA_UNITY

· EKQCA_HRC

· EKQCA_RO

· EKQCA_ES_1_0

· EKQCA_ES_310

· EKQCA_KIMC_1_6i

iLightSource
The light source used during image capture. iLightSource can be any one of the following:

· EKQCA_TUNGSTEN_WITH_METAL

· EKQCA_TUNGSTEN_WITH_DICHROIC

· EKQCA_METAL_HALIDE

· EKQCA_XENON

Return Value

 piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_INVALID_PARAMS
if vMatrix is NULL.

EKQCA_ATTENUATED
if the channel gains are attenuated by the hardware accelerator.

Remarks

You can use the vMatrix option to download your own custom color correction matrix, if you have one. However, it is recommended that you use the iCameraType and iLightSource option to specify a predefined color correction matrix for that Camera Type and Light Source combination. This will normally result in optimal color reproduction capability.

When using the hardware accelerator option, the color correction matrix functions modify the coefficients in a matrix multiplier circuit that is also handling white balance, hue, and saturation adjustment. If the values that you send to the hardware accelerator cause the matrix coefficients to exceed a preset value, then the channel gains will be decreased to best use the dynamic range of the accelertor.

The ToucanServer DLL notifies you when the channel gains have been decreased with a return value of EKQCA_ATTENUATED. You will also notice a shift in video amplitude on the monitor.

Verifying a Custom Color Correction Matrix

HRESULT GetColorCorrectionMatrix([in, out] VARIANT* pvMatrix, [out, retval] int* piStatus);

Parameters

pvMatrix
Pointer to VARIANT containing a SafeArray of nine floats which will hold the returned color correction. The matrix is 3X3 in size.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_INVALID_PARAMS
if pvMatrix is NULL.

Remarks

Valid data will only be returned if the user down-loaded a custom color correction matrix and did not select one of the CameraType and LightSource options. That is, the built-in color correction matrices are considered proprietary and are therefore not exposed via this interface. Only a custom color correction matrix specified by the user and downloaded via the SetColorCorrectionMatrix(vMatrix) method will be returned to the user.

Setting Hue and Saturation

HRESULT SetHueAndSaturation([in] float fHue, [in] float fSat, [out, retval] piStatus);

Parameters

fHue
The Hue setting. iHue ranges from -360.0 to 360.0.
fSat
The Saturation setting. iSat ranges from 0.0 to 2.0.
Return Value

piStatus
 EKQCA_SUCCESS

if the function is successful.

 EKQCA_PARAMS_OUT_OF_RANGE
if iHue or iSat is not one of the legal values mentioned above.

 EKQCA_ATTENUATED

if the channel gains are attenuated.

HRESULT GetHueAndSaturation([out] float* pfHue, [out] float* pfSat, [out, retval] int* piStatus);

Parameters

pfHue, pfSat
Pointers to variables of type floats which will hold the values returned.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_INVALID_PARAMS
if either pfHue, or pfSat is NULL.

Remarks

This routine can be used to globally correct the image for shifts in hue or changes in the saturation of the colors. A hue shift will complement all colors in the image (i.e. reds will become cyan, greens will become magenta, etc.). A hue shift of 120 degrees will convert reds into greens and greens into blues and blues into reds, etc. The routine can be most useful for correcting for small shifts in hue, on the order of several degrees.

The saturation controls the colorfulness of the image globally. An fSat value of 1.0 implies no change. An fSat value of 2.0 doubles the saturation of all colors. An fSat value of 0 will make all colors neutral (i.e. luminance signal).

The SetHueAndSaturation routine complements the selection of the color correction matrix SetColorCorrectionMatrix and should not be used in it’s place.

When using the optional hardware accelerator, the hue and saturation selection affects the coefficients of a matrix multiplier circuit that is also used for color fidelity, and white balance adjustment. If the values you send to the hardware accelerator cause the matrix coefficients to exced a preset value, then the channel gains will be decreased to preserve the available dynamic range of the hardware.

When this is the case, the ToucanServer DLL notifies you when the channel gains have been decreased with a return value of EKQCA_ATTENUATED. You may also notice a shift in video amplitude on the monitor.

Checking Channel Gain

HRESULT GetChannelGain([out] float* pfChannelGain, [out, retval] int* piStatus);

Parameter

pfChannelGain
A pointer to a variable of type float which will hold the channel gain value.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_INVALID_PARAMS
if pfChannelGain is NULL.

Remarks
Normally, the returned value is one. However, when using the hardware accelerator option, a value less than one will be returned if the channel gains are attenuated. This happens when the allowed dynamic range for the matrix multiplier coefficients are exceeded.

Setting the Output RGB Order

HRESULT SetRGBOrder([in] int iRGBOrder, [out, retval] int* piStatus);

Parameter

iRGBOrder
RGB Order setting. iRGBOrder can be any one of the following:

· EKQCA_RGB

· EKQCA_GRB

· EKQCA_RBG

· EKQCA_BRG

· EKQCA_BGR

· EKQCA_GBR

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iRGBOrder is not one of the legal values mentioned above.

HRESULT GetRGBOrder([out, retval] int* piRGBOrder);

Return Value

piRGBOrder
pointer to the current RGB Order setting.

Remarks

The output color components can be placed in any order. EKQCA_RGB is the default setting.

Selecting an Output Mode

HRESULT SetOutputMode([in] int iOutputMode, [out, retval] int* piStatus);

Parameter

iOutputMode
Output Mode setting. iOutputMode can be any one of the following:

· EKQCA_NORMAL_IMAGE

· EKQCA_EDGE_GRADIENT_IMAGE

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iOutputMode is not one of the legal values mentioned above.

HRESULT GetOutputMode([out, retval] int* piOutputMode);

Return Value

piOutputMode
pointer to the current Output Mode setting.

Results

Set piOutputMode to EKQCA_EDGE_GRADIENT_IMAGE to view just the detail information of an image as selected by the Sharpening Gain and Edge Enhancement modes. This mode is useful in determining the correct amount of sharpening gain to apply to the image. The default mode is EKQCA_NORMAL_IMAGE.

Choosing an Output Pixel Format

HRESULT SetOutputPixelFormat([in] int iPixelFormat, [out, retval] int* piStatus);

Parameter

iPixelFormat
Output Pixel Format setting. iPixelFormat can be any one of the following:

· EKQCA_UNPACKED_LSB_ALIGN

· EKQCA_UNPACKED_MSB_ALIGN

· EKQCA_PACKED_LSB_ALIGN

Return Value

piStatus

EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iPixelFormat is not one of the legal values mentioned above.

HRESULT GetOutputPixelFormat([out, retval] int* piPixelFormat);

Return Value

piPixelFormat
pointer to the current Output Pixel Format setting.

Results

This function sets the alignment of the output pixel data within a 32 bit word. If the output RGB data is (0,0,0), (1,1,1,), (2,2,2), (3,3,3), and if EKQCA_UNPACKED_LSB_ALIGN is called, the output 32 bit words will be LSB aligned: -000, -111, -222, -333. If EKQCA_UNPACKED_MSB_ALIGN is selected, the output 32 bit word will be MSB aligned: 000-, 111-, 222-, 333-. If EKQCA_PACKED_LSB_ALIGN is called, the output 32 bit word will be LSB aligned: 1000, 2211, 3332.

NOTE

The RGB ordering is not affected by this option, other than that the RGB triplet will either be MSB (RGB-) or LSB (-RGB) aligned.

Getting Hardware Accelerator Device Information

HRESULT GetDeviceInformation([in, out] VARIANT* pvDeviceInfo, [out, retval] int* piStatus);

Parameter

pvDeviceInfo
A pointer to a Variant containing a Safearray of bytes which will hold a EKQCA_DEVICEINFO structure to be returned.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_INVALID_PARAMS
if pvDeviceInfo is NULL.

NOTE
Toucan Information structure:

typedef struct

{

 char szFIFODepth[4];

 char szBoardRevision[16];

 char szBoardReleaseDate[32];

 char szBoardMinDLLRevisionNeeded[16];

 char szBoardAssemblyNumber[16];

 char szDLLRevision[16];

 char szDLLReleaseDate[32];

} EKQCA_DEVICEINFO;

Enabling the Optional Hardware Accelerator

HRESULT UseHardware([in] BOOL _bUseHardware, [out, retval] int* piStatus);

Parameters

_bUseHardware
Boolean to select use of hardware accelerator, if installed

_bUseHardware defaults to TRUE if the hardware accelerator

is available for use.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_DEVICE_NOT_AVAILABLE
if hardware is not present for use

Remarks
The optional hardware accelerator can be selected for processing the color images, if it is installed and the Windows NT operating system is running (i.e. the NT device driver for the hardware accelerator is running).

The user can turn off use of the hardware accelerator by setting the boolean variable to false.

Choosing a Future Configuration

HRESULT SetFutureConfiguration([in] int iConfig, [out, retval] int* piStatus);

Parameter

iConfig
Future Configuration setting. iConfig ranges from 0 to 255.

Return Value

piStatus
EKQCA_SUCCESS
if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if iConfig is not within the range mentioned above.

HRESULT GetFutureConfiguration([out, retval] int* piConfig);

Return Value

piConfig
pointer to the operative future configuration setting.

Remarks

This command provides for the add-on of new functions to the product at some later time. Call the SetFutureConfiguration and set it to 0 (zero) to make future configuration upgrades easier.

Reseting the Optional Hardware Accelerator

HRESULT ResetDevice([out, retval] int* piStatus);

Return Value

piStatus
EKQCA_SUCCESS

if the function is successful.

EKQCA_UNABLE_TO_WRITE_DEVICE
if the device cannot be reset.

Remarks
Resets the optional hardware accelerator to a known state. All ToucanServer DLL parameters are reset to the default powerup state.

Setting Gamma Correction

HRESULT SetGamma([in] float fGamma, [out, retval] int* piStatus);

Parameters

fGamma
The gamma value to be corrected

 fGamma defaults to 1.0. The allowed range is .5 to 3.0
Return Value

piStatus
EKQCA_SUCCESS

if the function is successful.

EKQCA_PARAMS_OUT_OF_RANGE
if fGamma is out of range.

HRESULT Gamma([out, retval] float* pfGamma);

Return Value

pfGamma
pointer to the current gamma setting.

Remarks

The routine corrects the tone scale of the image for the gamma non-linearity of the display monitor.

The default value is unity which implies no correction. Most CRT color monitors are highly non-linear in their display characteristic. In order to render a pleasing image on the monitor requires gamma correction to be appied somewhere in the display chain. This routine is provided as a means for accomplishing this correction.

The user is cautioned to use this routine wisely. Since, once gamma correction is applied to the image, it cannot be easily undone (i.e. dynamic range is lost). This best place to properly correct for the gamma of the monitor is in the RAM-DAC’s of the display card itself. This preserves the color information of the image and permits it to be optimally rendered on other display media, such as a color printer. Sometimes this is not always possible and then under those circumstances, use of this routine is justified.

gjm 12/3/98

42

