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Abstract

We describe research being conducted in the University of Maryland's Keck

Laboratory for the Analysis of Visual Motion. The Keck Laboratory is a

multi-perspective computer vision Laboratory containing sixty four digital,

progressive scan cameras (forty eight monochromatic and sixteen single CCD

color) con�gured into sixteen groups of four cameras. Each group of four is

a quadranocular stereo rig consisting of three monochromatic and one color

camera. The cameras are attached to a network of sixteen PC's used for both

data collection and real time video analysis.

We �rst describe the architecture of the system in detail, and then present

two applications:

1. Real time multi-perspective tracking of body parts for motion capture. We

have developed a real time 3D motion capture system that integrates images

from a large number of color cameras to both detect and track human body

parts in 3D. A preliminary version of this system (developed in collabora-

tion with ATR's Media Integration & Communications Research Laborato-

ries and the M.I.T. Media Laboratory) was demonstrated at SIGGRAPH '98.

That version, based on the W4 system for visual surveillance developed in our

laboratory. We describe improved versions of the background modeling and

tracking components of that system

2. Real-time volume intersection. Models of human shape can also be con-

structed using volume intersection methods. Here, we use the same back-

ground modeling and subtraction methods as in our motion capture system,

but then utilize parallel and distributed algorithms for constructing an oct-

tree representation of the volume of the person being observed. Details of this

algorithm will be described.
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1 Introduction

In this paper we describe ongoing research at the University of Maryland Computer

Vision Laboratory on problems related to measuring human motion and activity using

multi-perspective imaging. This research is being carried out in the Keck Laboratory

for the Analysis of Visual Motion, a multiperspective video capture and analysis facility

established with a grant from the Keck Foundation. In Section 2 of this report we describe

the architecture of that Laboratory.

We can envision many applications in which a suite of cameras is employed to model or

monitor an object or a small environment. Representative examples are work on multi-

perspective stereo [1], space carving for volume reconstruction [2] and applications such

as Georgia Tech's Smart Room [3, 4].

Our own work focuses on real time distributed algorithms for motion capture and ges-

ture recognition. We describe two ongoing projects in recovery of articulated body models

from multi-perspective video. In Section 3 we describe a feature based approach, in which

each image in a multi-perspective suite of images is analyzed to identify the locations of

principal body parts such as the head, hands, elbows, feet, etc. The three dimensional

locations of those body parts is then determined by triangulation and trajectory smooth-

ing. An early version of this system was demonstrated at SIGGRAPH in 1998. Finally,

in Section 4 we present recent research on volumetric reconstruction using distributed

volume intersection algorithm. Our current goals are to combine shape and color analysis

to identify body parts and gestures in this volumetric representation.

2 Keck Laboratory Architecture

The Keck Laboratory for the Analysis of Visual Movement is a multi-perspective imag-

ing laboratory, containing 64 digital, progressive-scan cameras organized as sixteen short

baseline stereo rigs (see Figure 1). In each quadranocular rig, there are three monochro-

matic and one color camera. The cameras are connected to a network of PC's running

Windows NT that can collect imagery from all of the cameras at speeds of up to 85 frames

per second. The dimensions of the keck lab are 24' by 24' by 10'; a panoramic view of

the lab is shown in Figure 2.

2.1 System design

A primary goal in the design of the Keck lab was to maximize captured video quality,

while using commonly available hardware for economy. To meet this goal, uncompressed
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Figure 1: Keck Lab Architecture

Figure 2: Keck Lab panorama
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Figure 3: Keck Lab example images from four viewpoints
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# cameras FPS Throughput (MB/s)

1 30 8.9

4 30 35.9

4 60 71.8

4 85 101.7

Table 1: Data throughput requirements

video is captured using digital, processive scan cameras directly to PCs. A schematic of

the Keck lab is shown in Figure 4. The Keck lab was designed to capture uncompressed

video sequences to both memory and disk. The data throughput requirements for various

number of cameras and frame rates are shown in Table 1. The design of the Keck lab

allows capturing uncompressed video to memory at up to 100 MB/s, and capturing to

disk at up to 50 MB/s. In order to achieve the required 50 MB/s disk throughput, 3 SCSI

Ultra 2 Wide disks (Seagate Cheetah) are used in a RAID con�guation. Double the disk

throughput could be achieved by writing a custom frame grabber device driver, which

would write the images directly to the SCSI controller, instead of bu�ering the images to

memory (which requires transmitting them over the PCI bus twice) [5].

The hardware used in the Keck lab includes the following:

� 64 digital 85 FPS progressive-scan cameras

{ 48 grayscale, Kodak ES-310

{ 16 color, Kodak ES-310C (Bayer color �lter version of ES-310)

� 64 Schneider 8 mm C-mount lenses

� 64 Matrox Meteor II Digital frame grabbers

� 17 Dell 610 Precision Workstations

{ Dual Pentium II Xeon 450 MHz

{ 1 GB SDRAM, expandable to 2 GB

{ 9 GB SCSI Ultra II Wide hard drive

{ integrated 100 Mbps Ethernet interface

� Data Translation DT340 Digital IO board
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� Peak Performance calibration frame

� 3 Apex Outlook monitor switches

� 21" Dell monitor

� 3COM 100 Mbps 24-port network switch

� Blackbox RS-485 interface adapter

� Quantum 35 GB Digital Linear Tape drive

The Kodak ES-310 cameras have a resolution of 648x484x8 and can operate at up 85

FPS in full frame progressive scan mode (speeds up to 140 FPS can be achieved using a

smaller region of interest window). The ES-310 has a 10-bit digitizer for each pixel, in

which the user can select which 8 bits are used for digital output. The ES-310 can be

con�gured using either a RS-232 or RS-485 interface. In the Keck Lab, we have designed

a RS-485 network to con�gure the 64 ES-310 cameras.

All 64 cameras are frame synchronized using a TTL-level signal generated by a Data

Translation DT340. For video acquisition, the synchronization signal is used to simulta-

neously start all cameras. No timecode per frame is required.

2.2 Acquisition software

The software for video acquisition has been custom written for the Keck lab, using the

following tools:

� Matrox Imaging Library 6.0

� Visual C++ 6.0

� Windows NT 4.0

� Data Translation DT340 SDK

The acquisition software uses a custom DCOM server, KeckServer, which runs on each

of the 16 PCs. The controller PC makes connections with each of the camera PCs, and

sends and retrieves messages and images. The ICamera interface used for the KeckServer

is:

HRESULT ICamera::openCameras(char cameras, char *dcf) Opens the cameras speci�ed

by the bits in cameras, using the given Matrox DCF �le.
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Figure 4: Keck Lab Schematic
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# cameras FPS Max duration (sec)

1 30 99.8

4 30 24.9

4 60 12.5

4 85 8.8

Table 2: Maximum capture durations

HRESULT ICamera::closeCameras() Close any open cameras.

HRESULT ICamera::startCapture(int numFrames) Start a capture to memory for the

speci�ed number of frames.

HRESULT ICamera::saveCapturedSequenceToFile(char *�leName) Saves the captured

memory sequences to an AVI �le.

HRESULT ICamera::getLiveImage(int cameraNumber, int *imageSize, unsigned char

**image) Returns the next live image (speci�ed by the camera number) in the

image bu�er. The image bu�er must be freed when it is no longer needed.

HRESULT ICamera::getCapturedImage(int cameraNumber, int imageNumber, int *im-

ageSize, unsigned char **image) Returns the speci�ed captured image in the image

bu�er. The image bu�er must be freed when it is no longer needed.

2.3 Capabilities

The Keck lab is currently con�gured to capture up to 896 MB of video into upper memory

(above the 128 MB allocated for Windows NT). This corresponds to 2995 648x484 frames.

The maximum capture durations are given in Table 2. The capture durations can be

increased by a factor of 2.14 by expanding the PCs from 1 GB to 2 GB.

The 450 MHz Pentium II is capable of 1800 MIPS, using the MMX operations [5]. With

dual CPUs per PC, this provides signi�cant computational power for real-time computer

vision applications. The Dell 610 is capable of being upgraded to faster Pentium III

processors, which would further increase the computational capabilities.

Each Dell 610 PC has a 100 Mbits/s Ethernet adapter, which is connected to a 3COM

Ethernet switch. The e�ective throughput is such that each PC can communicate up to

10 MBytes/s to any other PC.
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Figure 5: Stereo error analysis

2.4 Stereo error analysis

The quadranocular camera nodes of the Keck lab are designed to facilitate stereo depth

computations. The trinocular baseline is adjustable from 150 to 300 mm. With a 300

mm baseline, a distance of 6' between the object and camera, and assuming single pixel

correlation accuracy, then the depth precision is 26 mm. The depth precision for a range

of baselines is given in Figure 5.

2.5 Lens distortion

In selecting the lenses for use with the Keck lab, we considered both the �eld of view

and lens distortion (in general, as FOV increases, so does the lens distortion). We com-

pared the image distortion for 3 commonly available C-mount lenses, using a line pattern

commonly used for camera calibration purposes. From the images shown in Figure 6, the

Schneider lens clearly had the least amount of distortion. Moreover, the Schneider lens

was the only lens tested that did not have signi�cant defocus near the perimeter of the

images. Note that while certain types of lens distortion (e.g., radial) can be corrected in

software, image defocus cannot be easily corrected, particularly within a real-time system.
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Figure 6: Lens distortion analysis images. Top: Cosmicar 6 mm, Middle: Canon 7.5 mm,

Bottom: Schneider 8 mm.
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Figure 7: Peak Performance calibration frame

2.6 Calibration hardware

To facilitate strong calibration of the camera system, a Peak Performance calibration

frame is utilized (see Figure 7). The calibration frame contains 25 white balls (1" in di-

ameter), each of which has a known location accuracy of 1 mm. Additional hardware, such

as a 1 m length wand with LED's at known locations, are also used for weak calibration.

3 Real-time 3-D Motion Capture System

Motion capture systems are used to detect any human movement and transfer that move-

ment to 3-D graphical models used in animation for movies, games, commercials, etc.

While motion capture is typically solved using magnetic systems and optical systems

[6, 7], there exist mass market applications in which such solutions are untenable either

due to cost or because it is impractical for people entering an environment to be suited

up with active devices or special re
ectors. Due to these restrictions of existing systems,

a vision-based motion capture system which does not rely on contact devices would have

signi�cant advantages.

We have developed a real-time 3-D motion capture system that integrates images from a

number of color cameras to detect and track human movement in 3D. It provides a person
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with control over the movement of a virtual computer graphics character. A preliminary

version of this system (developed in collaboration with ATR's Media Integration & Com-

munications Research Laboratories and the M.I.T. Media Laboratory) was demonstrated

at SIGGRAPH'98 [8, 9].

3.1 System Overview

Figure 8: Block diagram of the system.

Figure 8 shows the block diagram of the system. A set of color CCD cameras observes

a person. Each camera is attached to a PC running the W4 system [10]. W4 is a real-time

vision system that detects people, and locates and tracks body parts. It performs back-

ground subtraction (described in detail in Section 3.2), silhouette analysis and template

matching (described in Section 3.3)to locate and track the 2-D positions of salient body

parts, e.g., head, torso, hands, and feet, in the image. A central controller obtains the 3-D

positions of these body parts by triangulation and optimization processes. A lightweight

version of the dynamical models developed by M.I.T.'s Media Laboratory [11] are used

to smooth the 3D body part trajectories and predicted locations of those parts in each

view. The graphic reproduction system developed by ATR's Media Integration & Com-

munications Research Laboratories uses the body posture output to render and animate

a cartoon-like character.

3.2 Background Modeling and Foreground Detection

One approach for discriminating a moving object from the background scene is background

subtraction. The idea of background subtraction is to subtract the current image from a
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reference image, which is acquired from a static background during a training period. The

subtraction leaves only non-stationary or new objects, which include the objects' entire

silhouette region. The technique has been used in many vision systems as a preprocessing

step for object detection and tracking, for examples, [10, 12, 9, 13, 14]. The results of the

existing algorithms are fairly good; in addition, many of them run in real-time. However,

many of these algorithms, including the original version of W4 (which was originally

designed for outdoor visual surveillance system, and operates on monocular gray scale

imagery), are susceptible to both global and local illumination changes such as shadows

and highlights. These cause the consequent processes, e.g. tracking, recognition, etc., to

fail. The accuracy and eÆciency of the detection are clearly very crucial to those tasks.

This problem is the underlying motivation of our extension to W4's background modeling

described below.

3.2.1 Computational Color Model

Figure 9: Our proposed color model in the three-dimensional RGB color space; the back-

ground image is statistically pixel-wise modeled. Ei represents an expected color of a

given ith pixel and Ii represents the color value of the pixel in a current image. The

di�erence between Ii and Ei is decomposed into brightness (�i) and chromaticity (CDi)

components.

Our background model is a color model that separates brightness from chromaticity.

Figure 9 illustrates the proposed color model in three-dimensional RGB color space. Con-

sider a pixel, i, in the image; let Ei = [ER(i); EG(i); EB(i)] represent the pixel's expected

RGB color in the reference or background image. The line OEi passing through the origin

and the point Ei is called the expected chromaticity line. Next, let Ii = [IR(i); IG(i); IB(i)]
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denote the pixel's RGB color value in a current image that we want to subtract from the

background. Basically, we want to measure the distortion of Ii from Ei. We do this by

decomposing the distortion measurement into two components, brightness distortion and

chromaticity distortion, de�ned below.

Brightness Distortion (�) The brightness distortion (�) is a scalar value that brings

the observed color close to the expected chromaticity line. It is obtained by minimizing

�(�i) = (Ii � �iEi)
2 (1)

�i represents the pixel's strength of brightness with respect to the expected value. �i is

1 if the brightness of the given pixel in the current image is the same as in the reference

image. �i is less than 1 if it is darker, and greater than 1 if it becomes brighter than the

expected brightness.

Color Distortion (CD) Color distortion is de�ned as the orthogonal distance between

the observed color and the expected chromaticity line. The color distortion of a pixel i is

given by

CDi = kIi � �iEik (2)

3.2.2 Background Subtraction

The basic scheme of background subtraction is to subtract the image from a reference

image that models the background scene. The steps of the algorithm are as follows:

� Background modeling constructs a reference image representing the background.

� Threshold selection determines appropriate threshold values used in the subtraction

operation to obtain a desired detection rate.

� Subtraction operation or pixel classi�cation classi�es the type of a given pixel, i.e.,

the pixel is the part of background ( including ordinary background and shaded

background), or it is a moving object.

Background Modeling In the background training process, the reference background

image and some parameters associated with normalization are computed over a number

of static background frames. The background is modeled statistically on a pixel by pixel

basis. A pixel is modeled by a 4-tuple < Ei; si; ai; bi > de�ned below.
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Ei is the expected color value of pixel i given by

Ei = [�R(i); �G(i); �B(i)] (3)

where �R(i), �G(i), and �B(i) are the arithmetic means of the ith pixel's red, green, blue

values computed over N background frames.

si is the standard deviation of color value de�ned as

si = [�R(i); �G(i); �B(i)] (4)

where �R(i), �G(i), and �B(i) are the standard deviation of the ith pixel's red, green, blue

values computed over N frame of the background frames.

We balance color bands by rescaling the color values by this pixel variation factors, si.

Next, we consider the variation of the brightness and chromaticity distortions over space

and time of the training background images. We found that di�erent pixels yield di�erent

distributions of � and CD. These variations are embedded in the background model as

ai and bi in the 4-tuple background model for each pixel, and are used as normalization

factors.

ai represents the variation of the brightness distortion of ith pixel, which is given by

ai = RMS(�i) =

sPN
i=0(�i � 1)2

N
(5)

bi represents the variation of the chromaticity distortion of the ith pixel, which is given

by

bi = RMS(CDi) =

sPN
i=0(CDi)2

N
(6)

We then rescale or normalize the �i and CDi by ai and bi respectively. Let

c�i = �i � 1

ai
(7)

dCDi =
CDi

bi
(8)

be the normalized brightness distortion and the normalized chromaticity distortion re-

spectively.

Pixel Classi�cation or Subtraction Operation In this step, the di�erence between

the background image and the current image is evaluated. The di�erence is decomposed

into brightness and chromaticity components. Applying the suitable thresholds on the
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brightness distortion (�) and the chromaticity distortion (CD) of a pixel i yields an object

mask M(i) which indicates the type of the pixel. Our method classi�es a given pixel into

four categories. A pixel in the current image is

� Original background (B) if it has both brightness and chromaticity similar to those

of the same pixel in the background image.

� Shaded background or shadow (S) if it has similar chromaticity but lower brightness

than those of the same pixel in the background image. This is based on the notion of

the shadow as a semi-transparent region in the image, which retains a representation

of the underlying surface pattern, texture or color value [15].

� Highlighted background (H), if it has similar chromaticity but higher brightness than

the background image.

� Moving foreground object (F) if the pixel has chromaticity di�erent from the ex-

pected values in the background image.

Based on these de�nitions, a pixel is classi�ed into one of the four categories B; S;H; F

by the following decision procedure.

M(i) =

8>>>>><>>>>>:
F : dCDi > �CD or c�i < ��lo; else

B : c�i < ��1 and c�i > ��2; else

S : c�i < 0; else

H : otherwise

(9)

where �CD, ��1, and ��2 are selected threshold values used to determine the similarities of

the chromaticity and brightness between the background image and the current observed

image. ��lo is a lower bound for the normalized brightness distortion. This is used to

avoid a problem of dark pixels being misclassi�ed as a shadow. Because the color point

of a dark pixel is close to the origin in RGB space, and because all chromaticity lines in

RGB space meet at the origin, a dark point is considered to be close or similar to any

chromaticity line.

Automatic Threshold Selection Typically, if the distortion distribution is assumed

to be a Gaussian distribution, then to achieve a desired detection rate,r, we can threshold

the distortion by K� where K is a constant determined by r and � is the standard

deviation of the distribution. However, we found from experiments that the distribution

of c�i and dCDi are not Gaussian (see Figure 10). Thus, our method determines the

appropriate thresholds by a statistical learning procedure. First, a histogram of the
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normalized brightness distortion, c�i , and a histogram of the normalized chromaticity

distortion, dCDi, are constructed as shown in Figure 10. The histograms are built from

combined data through a long sequence captured during the background learning period.

The total sample would be NXY values for a histogram. (The image is X � Y and

the number of trained background frames is N .) After constructing the histogram, the

thresholds are now automatically selected according to the desired detection rate r. A

threshold for chromaticity distortion, �CD, is the normalized chromaticity distortion value

at the detection rate of r. In brightness distortion, two thresholds (��1 and ��2) are needed

to de�ne the brightness range. ��1 is the c�i value at that detection rate r, and ��2 is thec�i value at the (1� r) detection rate.

Figure 10: (a) is the normalized brightness distortion (c�i) histogram, and (b) is the

normalized chromaticity distortion ( dCDi) histogram.

3.2.3 Background Subtraction Result

Figure 11 shows the result of applying the algorithm to several frames of an indoor scene

containing a person walking around the room. As the person moves, he both obscures

the background and casts shadows on the 
oor and wall. Red pixels depict shadows, and

we can easily see how the shape of the shadow changes as the person moves. Although it

is diÆcult to see, there are green pixels which depict the highlighted background pixels,

appearing along the edge of the person's sweater.

Figure 12 illustrates our algorithm being able to cope with the problem of global il-

lumination change. It shows another indoor sequence of a person moving in a room;

at the middle of the sequence, the global illumination is changed by turning half of the


uorescence lamps o�. The system is still able to detect the target successfully.
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Figure 11: An example shows the result of our algorithm applying on a sequence of a

person moving in an indoor scene. The upper left image is the background scene, the

upper right image is the input sequence, and the lower left image shows the output from

our background subtraction (the foreground pixels are overlaid by blue, the shadows are

overlaid by red, the highlights are overlaid by green, and the ordinary background pixels

are kept as the original color.) The lower right image shows only foreground region after

noise cleaning is performed.
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Figure 12: An illustration shows our algorithm can cope with the global illumination

change. At the middle of the sequence, half of the 
uorescence lamps are turned o�. The

result shows that the system still detects the moving object successfully.
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(b)

(d) (e)(c)

(a)

Figure 13: Comparison of the di�erent background subtraction methods. (a) is an image

of the background scene and (b) is an incoming image with a person moving in the scene.

The results of the three mentioned methods -W4's gray-scale background subtraction

(c), YIQ background subtraction (d), and the new method (e) are shown. The top row

contains the intermediate results after thresholding, while the bottom row shows the �nal

results after noise cleaning post-processing.
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Note that sequences shown here are 320x240 images. The detection rate, r, was set at

0.9999, and the lower bound of the normalized brightness distortion (��lo) is set at 0.4.

Figure 13 compares the results of our algorithm to two other methods used in W4 [10]

and in [14]. W4's gray scale background subtraction model does not work well in an

indoor environment with strong 
uorescent light. The method of YIQ pixel classi�cation

used in [14] is too noisy. On the other hand, our new method works well, even against a

complex background while it can be computed very eÆciently for real-time applications.

3.3 Silhouette Analysis and 2-D Body Part Localization

W4's shape analysis and robust tracking techniques are used to detect people, and to

locate and track their body parts (head, hands, feet, torso). The system consists of �ve

computational components: background modeling, foreground object detection, motion

estimation of foreground objects, object tracking and labeling, and human body parts

locating and tracking. The background scene is statically modeled and the foreground

region is segmented as explained in the previous section. A geometric cardboard human

model [10] of a person in a standard upright pose is used to model the shape of human

body and to locate the body parts (head, torso, hands, legs and feet).

3.3.1 Template Matching

After predicting the locations of the head and hands using the cardboard model and

motion model (see Section 3.4.1), their positions are veri�ed and re�ned using dynamic

template matching. Multiple cues such as distance, color and shape which de�ne fea-

ture appearance are used in matching. The template consists of three main regions:

background border, foreground border, and foreground interior, see Figure 14. They are

weighted di�erently in matching. Including foreground/background pixels in the match-

ing helps to accurately locate the features. To combine shape information in matching,

the color error is computed only at the pixel coordinates for which either the template

or the image is a foreground pixel. Let Tc(x) be the color of pixel x of the template, and

Ic(x) be the color of pixel x of the image. The color error of pixel x, CE(x), is de�ned as:

CE(x) =
NX
i=1

24w(i) X
c=R;G;B

 
Tc(i)� Ic(i)

�c

!
2
35

for every pixel x such that T (x) or I(x) is a foreground pixel.

Next, for each pixel, the color error is normalized by subtracting a median color error

(MCE) which is the median value of the error surface. This normalization allows us to

compare the correlation peaks for the same feature across multiple views, and to estimate
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weights for the least square 3-D estimation of the features' location. Thus, the normalized

color error is gCE(x) = CE(x)�MCE

In addition, the distance error (DE) is combined. The distance error is the distance

between the predicted location of the feature being tracked and the pixel coordinate. The

�nal dissimilarity or total error (E) is de�ned as

E(x) = gCE(x) +DE(x)

Ideally, the matching result should yield a single sharp peak error surface. However,

due to many factors such as motion blur and image blur, an error surface with multiple

or shallow peaks can occur. We thus threshold the peaks to eliminate the outliers (bad

peaks) and keep only the promising peaks (good peaks). The peak thresholding is de�ned

as follows: The peak is a good peak if

MP � P > K �MAD

where MP is the median error value of all peaks, P is the error value of the peak,

MAD is the Median Absolute Di�erence of the error surface (de�ned below), and K is a

constant.

MAD = medianfx : x = jMP � Pij for all i peaks.g

Background Border pixel

Foreground Border pixel

Foreground Interior pixel

Template Mask

Figure 14: Representations of template and image for matching.

After �nding the best match, the color templates of the body parts are then updated

unless they are located within the silhouette of the torso. In this case, the pixels corre-

sponding to the head and hand are embedded in the larger component corresponding to

the torso. This makes it diÆcult to accurately estimate the position of the part, or, more

important, to determine which pixels within the torso are actual part pixels. In these

cases, the parts are tracked using correlation, but the templates are updated using only

skin color information and the location prediction comes from the 3-D controller. Figure

15 illustrates the body part localization algorithm.
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Figure 15: 2-D body part localization process diagram. First, background scene is mod-

eled (a). For each frame in the video sequence (b), the foreground region (c) is segmented

by the new method of pixel classi�cation. Base on the extracted silhouette and the original

image, the cardboard model is analyzed (d) and salient body part templates are created

(e). Finally, these parts (head, torso, hands and feet) are located by a combined method

of shape analysis and color template matching (f).
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3.4 3-D Reconstruction and Human Motion Model

By integrating the location data from each image, the 3-D body posture can be estimated.

First, the cameras are calibrated to obtain their parameters. For each frame in the

sequence, each instance of W4 sends to a central controller not only the body part location

data but also a corresponding con�dence value that indicates the level of con�dence of

its 2-D localization for each particular part. The con�dence value is obtained from the

similarity score of the template matching step. The controller then computes the 3-D

localization of the body part by performing a least square triangulation over that set

of 2-D data which has con�dence values higher than a threshold. We treat each body

part separately; i.e. at a certain frame, the 3-D position of the right hand and the left

hand may be obtained from triangulation of di�erent subsets of the cameras. A linear

optimization method for camera calibration and triangulation [16, 17] are employed here.

3.4.1 Motion Model and Prediction

The knowledge that the system will be tracking a human body provides many useful con-

straints because humans only move in certain ways. To constrain the body motion and

smooth the motion trajectory, a model of human body dynamics [11] developed by MIT's

Media Lab was �rst employed. However, the framework, while powerful, was computa-

tionally too expensive, especially when applied to the whole body. Thus, we experimented

with a computationally light-weight version that utilizes several linear Kalman �lters in

tracking and predicting the locations of the individual body parts. This system required

much less development time than the full dynamic model. These individual �lters are

then linked together by a global kinematic constraint mechanism. The linear Kalman

�lters approximate the low-level, dynamic constraints while the global constraint system

maintains the kinematic constraints. We found that this optimization provides suÆcient

predictive performance while making the system computationally more accessible and

easier to construct. These predictions are then fed back to the W4 systems to control

their 2-D tracking.

3.5 3D Motion Capture System Result

Figure 16 demonstrates the system's performance on some key frames in a video sequence.

Figure 17 shows our demonstration area at SIGGRAPH'98. The cameras were placed in a

semi-circle arrangement pointing toward the dancing area. A projector was placed next to

the dancing area and displayed the animated graphical character. In the demonstration,

a person entered the exhibit area and momentarily assumed a �xed posture that allowed
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Figure 16: An illustration of our system's result on some key frames in the video.
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the system to initialize (i.e. locate the person's head, torso, hands, and feet). They

were then allowed to \dance" freely in the area. The trajectories of their body parts are

used to control the animation of a cartoon-like character developed by ATR. Whenever

the tracking fails, the person can himself reinitialize the system by assuming the �xed

posture at the center of the demonstration area. The demonstration attracted many

attendees. Although our original target audiences were young children and young adults,

it turned out that the system also appealed to aged people as well as mass media people.

The graphical character

The performer

Cameras

Figure 17: A snap-shot of the demonstration at SIGGRAPH.

4 Real-time Volume Reconstruction

Volume reconstruction techniques can be employed to recover 3D shape information of

various objects, natural or man-built. An objective of our ongoing research is constructing,

in real time, human body shape models for subsequent gesture and action recognition.

Such models can be eÆciently constructed using volume reconstruction methods. We

utilize parallel and distributed algorithms for constructing an oct-tree representation of

the volume of a person (or any object, for that matter) being observed. The volume

reconstruction procedure utilizes a multi-perspective view of the scene, and consists of

the following steps:

� camera calibration

� background modeling, and object silhouette extraction as described in the previous

section
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� volume reconstruction via silhouette visual cone intersection

� volumetric data interpretation and visualization

Notice that not all of the above steps have to be done in real-time. Camera calibration

and background modeling are preliminary steps toward the volume reconstruction itself,

and therefore can be done o�-line.

4.1 Camera Calibration

An accurate camera calibration method is critical if the visual cone intersection procedure

is to produce �ne-detailed 3D shape estimation. We utilize an implementation of Tsai's

camera calibration algorithm [18], using a non-coplanar calibration procedure. It accepts

as input about 25 3D space points along with their corresponding projections to the

image planes, and produces as output the estimated camera calibration parameters, both

intrinsic and extrinsic. Our estimated average error in the object space is about 3 mm.

The accuracy can be improved somewhat by computing the projections of the feature

points with sub-pixel precision.

4.2 Background Modeling

The on-line silhouette extraction procedure uses background subtraction, which in turn

employs a pre-computed background model. In the environment of our lab, the 3D scene

is viewed by both color and gray-level cameras, and our volume reconstruction system is

able to extract object silhouettes from both color and gray-level image sequences via two

di�erent kinds of background models. Both are statistical pixel-wise models, but they

di�er in the way they are built and used. The color model was described in the previous

section.

The gray level model combines intensity and range data. The narrow-base stereo cam-

eras in the Keck Lab are used to build a background range map using a simple correlation

based stereo algorithm. For both gray level and range, each background pixel is modeled

by a 3-tuple < min;max;max� consecutive� difference >. More detailed information

about this background model is found in [10]. Notice that the use of the range model

increases the robustness of the gray-level background subtraction, eliminating unwanted

shadows.
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Figure 18: A multi-perspective snapshot of the background, a person in the "standing

up" sequence, and the extracted silhouettes.
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4.3 On-line Processing

Silhouette extraction and visual cone intersection are done on-line. The high-level picture

is as follows: the computation is initiated at one of the nodes, which becomes themanager;

the rest of the participating nodes become the em workers. Notice that there could be

any number of participating nodes.

The worker processes grab frames, extract silhouettes, and intersect visual cones, while

the manager process coordinates the overall volume reconstruction procedure and orga-

nizes the results. To put it simply, the workers reconstruct what they see, while the

manager gathers the results and renders the volume. Notice that the manager may also

capture and process frames, but this will reduce system performance unless the manager is

a multi-processor computer that can dedicate some of its processors for volume rendering

and other processors for capturing.

4.3.1 Silhouette Extraction

The silhouette extraction procedure uses background subtraction with adaptive thresh-

olds. In the color case, a pixel is classi�ed by applying suitable thresholds to its brightness

distortion and chromaticity distortion values. In this way, it is possible to split pixels

into four classes: original background, shaded background, highlighted background, and

foreground. The foreground pixels form the candidate pool for the foreground object

silhouette. In the gray-level case, the candidates for foreground regions are segmented in

both the intensity and the disparity images. Then the signi�cantly overlapping regions

are intersected to form the foreground object silhouette. This produces a more accurate

silhouette and eliminates unwanted shadows. In both cases (color and gray-level), some

post-processing is done to reduce noise and make the extracted silhouette more precise.

More details of both algorithms are found in [10] and [19]. Refer to Figure 18 to see the

results of the background subtraction in the color case. Notice that the foreground object

silhouette is well extracted and there is no "shadow carpet" underneath. There is, how-

ever, some noise in the silhouette images primarily due to the fact that the background

was not entirely static. This noise is dealt with by the robust visual cone intersection

procedure.

4.3.2 Visual Cone Intersection

Visual cone intersection is done eÆciently using a distributed algorithm that runs on a

PC cluster. Each worker process is assigned a view for which it extracts the foreground

object silhouette and builds a visual cone. This way, the visual cones are constructed in
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parallel. Once they are completed, the nodes exchange visual cones and build the �nal

octree. Notice that each node builds a copy of the �nal octree in parallel. As soon as the

octree is ready, the manager starts rendering andor storing the volume while the workers

process the next frame and build the next set of visual cones. This process loops until

the frame pool is exhausted or the manager terminates the computation. The following

paragraphs describe each step of the algorithm in more detail.

Octree Construction from Multiple Views A visual cone is represented by an oc-

tree, which is built via the rapid octree construction algorithm suggested by Szeliski [20].

First, the background is subtracted from the newly captured frame to obtain the fore-

ground object silhouette. Then the algorithm traverses the octree to a given depth and

computes the occupancy attribute (opaque, transparent, or half-transparent) of each vol-

ume element in a hierarchical fashion. A voxel is transparent if its projection lies entirely

outside the silhouette; and, similarly, a voxel is opaque if its projection lies entirely inside

the silhouette. If voxel transparency cannot be decided at the present level, it is consid-

ered to be half-transparent, and the algorithm proceeds with computing transparencies

for the voxel's children. Once the traversal is complete, the visual cone is ready to be

exchanged with the rest of the cluster.

As soon as each worker process receives a complete set of the visual cones, the �nal

octree is built as the intersection of the received octrees. The octree intersection algorithm

traverses all given visual cone octrees at the same time in the depth-�rst search manner.

The same branch is followed in all octrees until one of them reports a transparent leaf.

At this point the �nal tree's branch is trimmed and another one is explored. The process

continues until all branches are explored.

When the �nal octree is completed, the manager renders it in 3D, possibly using voxel

coloring andor texture mapping techniques. The workers, however, proceed with the next

frame, and the process repeats.

Voxel Projection and Transparency Test Details The above procedure has two

potential "bottle necks": voxel projection and the transparency test. Without specialized

parallel hardware, voxel projection could be expensive since it involves projection of eight

voxel vertices with subsequent computing of a convex hexagon to represent the voxel's

projection to the image plane. Intersecting the hexagonal projection with the silhouette

image to decide the voxel's transparency is also a source of signi�cant computation.

Szeliski proposes an eÆcient method to decide whether a voxel's projection is entirely

inside or entirely outside the silhouette. Given a voxel, the system computes the bound-

ing square s of the voxel's projection. Then the pre-computed half-distance transform
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map of the silhouette image is used to decide whether s entirely lies within the fore-

ground/background region. The half-distance transform map is a one-sided version of

the chessboard distance transform map. Each point in the half-distance transform map

contains the size of the largest square rooted at that point that �ts entirely within the

foreground region. Figure 19 gives an example of a binary image and its half-distance

transform.

Figure 19: A binary image (left) and its half-distance transform map (right)

The half-distance transform maps are pre-computed for both the silhouette image (pos-

itive map) and its complement (negative map). The bounding box of the voxel's projec-

tion is tested against both positive (for inclusion) and negative (for exclusion) maps to

determine the voxel's occupancy. If neither of the above tests is successful, the voxel's

occupancy is undetermined, and transparencies of its children are left to decide at the

next iteration of the algorithm.

Another time-consuming operation in the volume reconstruction procedure is the com-

putation of voxel projections. There are at least two ways to speed it up: using specialized

(parallel) hardware or employing lookup tables. With the absence of specialized hard-

ware, we use pre-computed half-distance transform lookup tables (HDTLT) containing

sizes of voxel projections that are used in the half-distance transform maps to determine

inclusion or exclusion of a voxel. Usage of HDTLT dramatically speeds up the volume

reconstruction procedure (by almost an order of magnitude, in our case) but its size makes

it impractical to share it over the network. An HDTLT is a full octree and its size grows

exponentially (as O(8d) = O(23d)) with respect to the depth parameter d. A typical

size of an HDTLT of depth 8 is about 28MB. Therefore, visual cones need be computed

"distributedly" and then shared with the manager of computation.
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4.4 Volumetric Data Visualization and Interpretation

Currently, volume visualization and interpretation are done o�-line. The application

simply outputs all the leaves of the �nal octree to an 'Open Inventor' ascii �le that can

be opened and viewed o�-line. Some snapshots of the reconstructed volume are shown

in Figure 20. Notice that although the silhouette images were quite noisy, the 3D object

was reconstructed correctly and almost all of the noise is gone due to the robustness of

the visual cone intersection procedure.

A real-time application, however, needs a more eÆcient way of rendering the volume.

To render an octree eÆciently, we are considering techniques that employ graphics accel-

erators to run volume rendering algorithms similar to the ones described in [21] and [22].

If color information is available, some eÆcient texture mappingvoxel coloring methods

[23] can be applied to better visualize the reconstructed volume.

4.5 Experimental Results

With the techniques described, we developed both sequential and distributed (parallel)

systems. In all test cases the volume was reconstructed to the silhouette image resolution,

which corresponds to 8 levels of the octree having the smallest voxel side of 1.5 cm. In the

sequential case, the program runs on a Pentium II 300 MHz PC with inputs from multiple

cameras simulated via disk �les. The program was able to reconstruct the object's volume

(given input from 6 virtual cameras supplying 320x240 silhouette images) in 20 ms on

average. This �gure does not include the time for frame grabbing, preprocessing (e.g.

silhouette extraction) and volume rendering. The distributed system runs on a PC cluster

consisting of Pentium III 400MHz computers inter-connected via a 100Mbit/s-bandwith

TCP/IP network. In a test for three cameras, the visual cones were constructed in 10

ms; the visual cone exchange took about 100 ms, and the �nal octree construction took

another 10 ms. For six cameras, the timing for visual cone construction and intersection

did not change, but the communication overhead grew up to 200ms. Reduction of this

term through oct-tree compression is the objective of our current implementation e�ort.
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Figure 20: The reconstructed volume of a person's body viewed from di�erent virtual

points.
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