
A High Performance Multi-Perspective Vision Studio∗

Eugene Borovikov, Alan Sussman, and Larry Davis
Department of Computer Science

University of Maryland
College Park, Maryland 20742, USA

{yab,als,lsd}@cs.umd.edu
http://www.umiacs.umd.edu/˜{yab,lsd}

http://www.cs.umd.edu/˜als

ABSTRACT
We describe a multi-perspective vision studio as a flexible
high performance framework for solving complex image pro-
cessing and machine vision problems on multi-view image se-
quences. The studio abstracts multi-view image data from
image sequence acquisition facilities, stores and catalogs se-
quences in a high performance distributed database, allows
customization of back-end processing services, and can serve
custom client applications, thus helping make multi-view
video sequence processing efficient and generic. To illustrate
our approach, we describe two multi-perspective studio ap-
plications, and discuss performance and scalability results.

Categories and Subject Descriptors
I.4 [Image Processing And Computer Vision]: Re-
construction, Applications; I.4.8 [Image Processing And
Computer Vision]: Scene Analysis—color, depth cues, ob-
ject recognition, shape, time-varying imagery ; I.4.10 [Image
Processing And Computer Vision]: Image Representa-
tion—hierarchical, multidimensional, statistical, volumetric;
H.3.3 [Information Search and Retrieval]: Information
Search and Retrieval—clustering, query formulation

General Terms
algorithms, management, measurement, performance, ex-
perimentation

Keywords
multi-perspective, vision, image processing, volumetric re-

∗This research was supported by the National Science Foun-
dation under Grants #EIA-9901249, #EIA-0121161, #ACI-
9619020 (UC Subcontract #10152408), and #ACI-9982087,
and Lawrence Livermore National Laboratory under Grants
#B517095 (UC Subcontract #10184497). The Linux cluster
used for the experiments was obtained through NSF Grant
#ANI-0123765 and a grant from IBM.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’03,June 23–26, 2003, San Francisco, California, USA.
Copyright 2003 ACM 1-58113-733-8/03/0006 ...$5.00.

construction, distributed system, high-performance, database

1. INTRODUCTION
Modern image analysis and computer vision systems of-

ten use multi-perspective imaging, which employs multiple
cameras shooting the scene of interest from various perspec-
tives. The basic idea is that more views deliver more infor-
mation about the scene, and potentially allow recovery of
interesting 3-dimensional features with more accuracy and
less intrusion into the scene (e.g., no markers for tracking
objects or people through the scene are required) . An ex-
citing broad range of applications for such systems includes
virtual view rendering, complex shape and movement anal-
ysis, multi-person tracking, virtualized reality, and smart
environments [6, 7, 9, 20, 21, 22, 24].

The availability of affordable digital cameras along with
the ever increasing computing capabilities of desktop com-
puters has made such applications more attractive for use
in various computer art and animation studios, medical fa-
cilities, business environments and people’s everyday lives.

Small scale systems (involving 3 cameras or less) can be
handled by a modern desktop computer, while larger scale
applications could be quite challenging even for high perfor-
mance computing machines. Performance issues arise be-
cause multi-perspective systems with large numbers of cam-
eras can produce and process vast amounts of image data
and video streams that can be very difficult to manage with-
out an efficient way to store, catalog and process the data.

Figure 1 shows a VRML model of a multi-perspective lab-
oratory at the University of Maryland [9]. One minute of
multi-perspective video, shot in this facility, may require up
to 95 GBytes of storage. If the desired processing of the
video data cannot be performed in real time, as described
in [4], the image data must persist in long-term storage for
further off-line processing.

It is still not feasible to manage and process such large
quantities of image data on a single PC or workstation, be-
cause of performance issues stemming both from accessing
the stored data and the computational requirements of the
subsequent processing. Therefore it is imperative to store
and process those sequences on a parallel machine or a clus-
ter of workstations, because much of the processing can be
done in parallel, and there is an opportunity to distribute
data across a disk farm to achieve high performance.

We propose a solution to the above problems in the form
of a multi-perspective vision studio that abstracts multi-view
image processing and vision algorithms away from the data



Figure 1: Keck Lab model

acquisition facilities, and provides a flexible and efficient way
to store, retrieve and process the collected data. By develop-
ing such a studio we allow new multi-view image processing
and vision algorithms to be implemented quickly and run
efficiently through a mechanism of user requests or queries.

The studio is based on an object-oriented framework called
the Active Data Repository (ADR) [15, 16], which provides
the ability to process and manage large amounts of scientific
data on a parallel machine or workstation cluster. The over-
all system design is logically partitioned into three parts:

• an ADR-based customizable and portable parallel back-
end,

• an application front-end that acts as a control gateway
for client applications, and

• a client application with a 3D viewer.

The studio design and implementation extends both the
ADR back-end customization and the application front-end
from a prototype [5] and provides a completely new OpenGL-
based client application with extensive query specification
and result management capabilities. We illustrate the util-
ity of the multi-perspective vision studio for two tasks: (1)
volumetric shape reconstruction and (2) human body shape
estimation via density model fitting. Note that efficient vol-
umetric shape reconstruction serves as the basis for imple-
menting other interesting 3D vision algorithms not discussed
in the paper, such as 3D tracking or surface recovery via a
mesh approximation.

2. STUDIO CORE
With multi-perspective image capture facilities able to

generate very large datasets, and with the development of
powerful multi-view vision algorithms, it becomes very de-
sirable to provide vision application developers with a highly
customizable tool for efficient management and processing of
the collected multi-perspective data. Our multi-perspective
vision studio provides such a tool. As shown in Figure 2 the
studio provides a data loading facility to import the cap-
tured video sequences into a high-performance data server
that is managed by the ADR parallel back-end services. The

data server can be queried by client applications via a set
of front-end services, some of which are application-specific
and some of which are common to all applications. Query re-
sults are returned to client applications either directly from
the parallel back-end or through the application front-end
(if, for example, a firewall separates the client application
and the data server).

Data Capture

Loader

Front-end services

Back-end services

Loader

Front-end services

Back-end services

Client Client

Data Capture

Database

Figure 2: Multi-perspective Vision Studio architec-
ture

2.1 Multi-view datasets
Because the studio data server is based on ADR, it follows

ADR’s basic design. A dataset consists of all images from a
single multi-perspective video sequence. A chunk of data is
a single image whose attributes include a camera index and
a time index. Data chunks are declustered across the avail-
able disks in the data server according to a user-specified
strategy. ADR supplies a default strategy based on Hilbert
space-filling curves [18, 19]. Dataset meta-information (e.g.,
camera configuration) may also be supplied by the user when
loading the data into the data server.

2.2 Customizable back-end
The image datasets are accessed through the parallel back-

end (PBE). The back-end is responsible for storing the datasets
and carrying out the requested input data retrieval, project-
ing input data from its coordinate space into the output co-
ordinate space, and performing aggregation operations. All
back-end services can be customized by the application de-
veloper, but default implementations are provided for most
services by the studio implementation.

The default implementation of the index service maps a
four-dimensional query region (x, y, z, t) into a set of rele-
vant data chunks. A <camera-index, time-index> pair is
mapped to the <time-index> via the default customization
of the projection service, to allow aggregation across all cam-
eras that view a given spatial region at a given time. No
default aggregation operation is supplied, since aggregation
is completely application dependent.

2.3 Application front-end
The application front-end (FE) interacts with clients via

an application-specific communication protocol, and trans-
lates queries into a common format for the ADR front-end,
which sends the query to the PBE. The application FE’s
duties also include maintenance of meta-information about
datasets (such as dataset name, number of views/cameras
and number of multi-perspective frames), responding to queries



coming from client applications, and (in some cases) sending
query results back to clients. The ADR FE uses its query
interface service to interact with application front-ends, and
its query submission service to schedule multiple queries re-
ceived from one or more application front-ends and submit
them in batches to the PBE.

2.4 Graphical Client Application
The studio application front-end can accept both indi-

vidual queries and query batches. Query batches are more
convenient for command line-based client applications, while
graphical clients are more likely to produce single queries.
The default GUI client provided by the studio allows both
approaches via the concept of a query session.

A session is a collection of queries that a user specifies via
the graphical interface of the 3D OpenGL client, which also
renders the session dataset in a flexible fashion. Sessions
can be saved to a file from the client, and loaded into the
client for later viewing.

A query request from the client into the data server in-
cludes the name of a dataset, a specification of the 3D region
of interest within the dataset, a frame index range with a
constant stride, and a set of cameras to use. For applications
that employ volumetric reconstruction, a query also speci-
fies a resolution for the reconstruction (which corresponds
to the depth of the octree used to represent the volume).
The volumetric results (one per frame) are returned as a set
of occupancy maps, represented as octrees. The new results
are then merged with previously obtained results, if any, for
viewing in the client. The user controls which volumetric
sequences participate in the merge by selecting the ones of
interest through a GUI control. The merge operation always
preserves the most detailed sections of the participating oc-
cupancy maps.

The client renders the 3D data a frame at a time, allowing
the user to browse the reconstructed sequences of 3D data.
A typical rendering of a 3D scene is shown in Figure 3. As
with most 3D renderers, the scene can be examined from
any point of view by dragging the mouse across the window.
A particular 3D frame is selected via the slider control.

3. VOLUME RECONSTRUCTION
The volumetric shape reconstruction procedure is based

on visual cone intersection, and was described in detail in
[4, 5]. The main idea is to efficiently build a 3D occupancy
map of the foreground object using silhouette data from all
available cameras (for example, see Figure 8) [23]. At each
step, the algorithm determines the occupancy of the space
bounded by a cube, and if the occupancy is undetermined, it
is decided for each of the cube’s eight sub-cubes recursively,
producing an octree approximating the object’s 3D shape.

OccupancyMap(cube,depth)

if depth=0, return;

label=Occupancy(cube);

if label=undetermined,

for subcube in Sub-cubes(cube),

OccupancyMap(subcube,depth-1);

else output label;

The prototype design and implementation did not per-
form well for several reasons, mainly related to the algo-
rithms used to perform cube projections, the visual cone in-
tersection algorithm, and the method used to merge query

Figure 3: Client GUI

results from multiple sources. We describe a set of potential
improvements to the problematic algorithms and provide
experimental results to evaluate their performance benefits.

3.1 Cube projection strategies
The efficiency of our occupancy map building procedure

strongly depends on the speed of the routine that deter-
mines a cube’s occupancy, which involves computing pro-
jections of the given cube into each of the available image
planes. The computation to project a 3D point X to a 2D
camera image plane is given by x = PX, where P is a 3× 4
camera projection matrix. Therefore, projecting a cube re-
quires 8 matrix-vector multiplications. The straightforward
prototype implementation used naive vertex projections, i.e.
project vertices as needed, which led to redundant projec-
tions of the same vertices, because multiple cubes of inter-
est may have common vertices. We therefore consider two
alternative cube projection strategies: vertex caching and
approximate cube projection. We discuss the relative perfor-
mance of the three strategies in Section 3.4.

3.1.1 Vertex caching
To reduce inefficiencies due to redundant vertex projec-

tions, we employed a hash table that, for each silhouette,
stores the projected coordinates of already visited vertices.
This method has average constant-time behavior for insert
and look-up operations, but (when utilized for very fine-
resolution occupancy maps) uses a significant amount of
memory to store vertex projections, which is a limited re-
source employed by many other ADR system components.
Therefore the storage allocated for the projected vertex cache
might not be enough to store all vertex projections, result-
ing in cache misses that would require redundant projection
operations.

3.1.2 Approximate cube projection
Because of the recursive nature and expected sparsity of

the resulting occupancy maps (octrees), the volumetric re-



construction method can afford to be conservatively approx-
imate at estimating the cube projections. We can prove
that a cube projection always lies within the projection of
the cube’s circumscribed sphere. Estimating the bounding
box of a sphere projection (requiring the equivalent of two
vertex projections) is much less expensive than projecting
eight vertices of a cube. However, this procedure produces
an approximation of the true cube projection and, therefore,
might require a deeper set of recursive calls in the octree
construction procedure.

3.2 Visual cone intersection
A visual cone is the portion of 3D space the camera sees

through a given silhouette. As was described in [5], the fi-
nal occupancy map is produced by intersecting visual cones,
also represented via octrees and produced from each silhou-
ette view. The visual cone intersection procedure has two
phases: local and global. In the local phase, each ADR PBE
node constructs a partial occupancy map as an intersection
of silhouette visual cones (one per image) local to that node.
The global phase intersects all partial octrees across nodes
to produce the final volumetric estimate.

3.2.1 A local phase improvement
In the prototype implementation of the local phase, each

node sequentially constructed local visual cones and then in-
tersected them to produce its partial occupancy map. This
was inefficient because the local visual cone creating proce-
dure always constructed the whole visual cone for a given
silhouette image, postponing the intersection step until all of
the visual cones are ready. The current implementation op-
timizes this operation by restricting the visual cone creator
with the current partial result, if one exists.

For example, given a number of local silhouettes, we first
build a visual cone for image 1. It will contain a superset
of all occupied voxels. Then we consider the silhouette im-
age 2, and prune the existing partial result accordingly, thus
reducing the partial occupancy map, still resulting in a su-
perset of all occupied voxels. The third and all subsequent
steps of the local phase are the same as the second step.

The partial occupancy map reduction technique substan-
tially reduces the amount of work compared to the amount
done in the prototype implementation. More specifically,
the performance improvement of the local phase is propor-
tional to the number of local silhouettes (images) a node
must process.

3.2.2 A global phase improvement
The prototype system’s global phase was designed to pro-

cess frames one at a time, thus imposing an unnecessary
synchronization restriction, and resulting in an inefficient
interprocessor communication pattern that required (p − 1)
communications per frame, where p is the number of proces-
sors. In most cases, queries request reconstruction of multi-
ple frames, leading us to consider the idea of frame grouping.

Suppose the parallel back-end processes frames in groups
of k. With this design, the local phase constructs k partial
occupancy maps. In the global phase, each of the p proces-
sors is responsible for combining at most �k

p
� frames with

an expense of at most 2(p−1)
k

communications per frame per
processor. While frame grouping may require higher peak
network bandwidth, it results in a better distribution of the
global phase workload (compared to the extreme case of the

prototype, where a single processor would do the global com-
bine). We would expect query execution across processors
to become less synchronous (because of smaller communi-
cation polling times per frame), and also to have a better
overall workload balance (because of the smoothing effect
from processing frames in groups). Our experimental results
presented in Section 3.4.3 support the performance benefits
of frame grouping.

3.3 Merging multiple query results
The graphical client application has to manage multiple

octree sequences returned from one or more queries. For
each frame, a user might have several query results for var-
ious 3D regions in the scene, resulting in aligned octrees,
usually of different depths (corresponding to different reso-
lutions). The client application has to merge and render all
the parts of the octrees, preserving the greatest reconstruc-
tion resolution available in each query region.

The merge operation performed on binary-valued occu-
pancy maps (octrees) is different from union or intersection.
Given two maps, merge keeps all opaque nodes from both
trees, always preferring the deepest branches in the octree.
Therefore, merge is both inclusive (like set union) and fine-
detailed (like set intersection). In the current system im-
plementation, merge is done at the client, because only the
client stores query results. In future work, we will investi-
gate the utility of computing and caching merged results in
the application front-end, or possibly in the parallel back-
end, to improve query response times.

3.4 Experiments
We ran our experiments on a Linux cluster with sixteen

Pentium III 650MHz nodes, each of which has 768MB of
RAM and 160GB disk storage. The nodes are intercon-
nected via channel-bonded Fast Ethernet (effectively 200Mb/sec
per node). Our test dataset was a multi-perspective se-
quence of 2400 frames generated by 13 synchronized color
cameras, each producing 640 × 480 images at 30 Hz. Even
though all of the experiments were run on a PC Linux
cluster, we did not attempt to optimize single node perfor-
mance with platform-specific coding techniques (SSE, etc.),
because we wanted the source code to be portable across
different platforms.

3.4.1 Different projection approaches
In the volumetric reconstruction procedure, the most com-

putationally intensive task is constructing silhouette-based
visual cones. This operation involves numerous 3D→ 2D
projection operations per silhouette (order of millions for
an octree of depth 8).

We queried a sample sequence of 256 frames, each frame
reconstructed to a depth of 8, and measured the time it takes
to do all necessary projections for a visual cone, using the
three different strategies described in Section 3.1.

On average, 85% of the vertex projections made by the
naive cube projection method were redundant. The vertex
caching method stores computed projections in a hash table,
which eliminates most of the redundant vertex projections
to produce a considerable performance gain over the naive
approach. The hash table was made quite large, using a
memory buffer that was 50% of the octree buffer size. The
approximate projection method, in turn, ran about 2 times
faster than the vertex caching method. This can be ex-



approximate vertex cache naive

0

2

4

6

8

10

12

se
co

nd
s

Projection timing statistics, depth 8

Figure 4: Voxel projection timing statistics. The
plot presents sample distributions as notched-boxes
with lines at the samples’ lower quartile, median,
and upper quartile values. The whiskers show the
samples’ extrema.

plained by the fact that in any resulting occupied cube set,
the number of cube centers is always strictly less than the
total number of (shared) vertices.

Our timing experiments show that with respect to the
naive projection method, using vertex caching can speed
up the visual cone construction by an average factor of 1.6,
and using approximate projections by an average factor of
3.5. Figure 4 shows the timing results of the three different
cube projection strategies for a sample sub-sequence of 256
frames, with each volumetric frame reconstructed to depth
8. The processing time statistics were aggregated over all
frames and all back-end nodes. Notice that not only did the
approximate projection method perform the best, it also
resulted in the lowest standard deviation for the cube pro-
jection running times.

3.4.2 System scaling
In our scaling experiment we used queries that require

processing a fixed number of images (3900 for the largest
query, 500 for the smallest), and ran on 2, 4, 8, and 16
processors. The upper two plots in Figure 5 show that the
system achieves close to linear speedups on contiguous time
range queries (step=1), while the lower two plots illustrate
suboptimal system scaling for non-contiguous time range
queries (step=3) due to workload imbalance introduced by
the choice of the time stride as well as by the set of cameras
used. More time stride related experiments are discussed in
Section 3.4.4.

3.4.3 Frame grouping schemes
As was mentioned in Section 3.2.2, the straightforward

approach of processing one multi-view frame at a time [5]
suffered from (a) excessive communication polling time, and
(b) significant workload imbalance. Our experiments show
that with multiple processing nodes, performance improves
by processing several multi-view frames at a time. A typical
eight-node query (third curve in Figure 6) for a sequence
of 600 frames with the octree depth parameter set to 9,
clearly reveals the advantages of frame grouping. Notice,
however, that it does not make practical sense to make the
frame group size too large, because the performance bene-

2 4 8 16  
0

2000

4000

6000

8000

10000

12000
Constant workload performance

frame group size

se
co

nd
s

 2 nodes
 4 nodes
 8 nodes
16 nodes

Figure 6: Major factors affecting server perfor-
mance: number of nodes and frame grouping

fits diminish and the bandwidth and memory requirements
for interprocessor communication greatly increase beyond a
fairly small value for the frame group size.

We summarize the performance effects of the parallel ma-
chine size and the frame grouping in Figure 6. By far, the
most important factor affecting the system performance is
the number of processors it runs on. Large frame group size
increases performance in all considered cases, but its effect
is fairly limited.

3.4.4 Varying time stride
Data declustering based on Hilbert space filling curves

should result in close to optimal workload balance for range
queries on contiguous regions in the multi-dimensional space.
However, that is not necessarily true for more complex query
patterns, such as volumetric reconstruction queries with vary-
ing time strides, where the user requests, for example, every
other or every third frame within a specified set of frames.
Figure 7 illustrates exactly that problem. We produced
statistics for a 16-node parallel back-end servicing 220-frame
queries into a fixed 3D region viewed by 13 cameras, varying
the time stride.

Although we used an adequate frame grouping parameter
(16), time strides of 4 and 8 resulted in a poor workload
balance. For the time strides 2 and 10 the frame distribution
is not perfect but reasonably good, and for 1, 5 and 7 the
workload balancing is close to ideal.

By design, the data declustering algorithm based on Hilbert
curves results in good workload balance for contiguous range
queries (i.e. over time-contiguous regions). We also ex-
pected Hilbert curve declustering to produce a good work-
load balance for other time strides, but as our experiments
show the workload may be poorly balanced for some non-
unit time strides queries. This result is not completely
surprising because Hilbert curve based declustering empha-
sizes local separation, ensuring that data chunks that are
adjacent in the underlying attribute space (in this case,
the time/frame number) are distributed to different disks.
In the case of non-unit strided queries, the workload bal-



2 4 8 16
10

2

10
3

10
4

cams=13, step=1

2 4 8 16
10

2

10
3

10
4

cams=5, step=1

2 4 8 16
10

2

10
3

10
4

cams=13, step=3

2 4 8 16
10

1

10
2

10
3

cams=5, step=3

actual timing
ideal scaling

Figure 5: System speedup for fixed workload queries. The log-log plot captions indicate the number of
cameras and the time step used. The horizontal axes show the number of processors, and the vertical axes
show the total query time in seconds.



1 2 3 4 5 6 7 8 9 10

0

100

200

300

400

fr
am

e 
hi

t c
ou

nt
 d

is
tr

ib
ut

io
n

query time stride

1 2 3 4 5 6 7 8 9 10
0

200

400

600

800

1000

1200

query time stride

qu
er

y 
ru

nn
in

g 
tim

e 
(s

ec
)

Figure 7: Load balancing depends on the time stride

ance becomes very unpredictable. Fortunately, most Multi-
perspective Vision Studio queries are expected to specify
unit time strides, so that a good workload balance is ex-
pected.

4. DENSITY BASED MODEL FITTING
3D shape estimation is one of the complex tasks related to

multi-perspective vision [10, 11, 12, 14]. Having an efficient
method for acquiring 3D occupancy maps is not all that
is needed for shape recognition. One needs a method for
analyzing an occupancy map to reason about the foreground
object’s shape. One good way to analyze the object’s shape
is to fit a model into the segmented image [3, 13, 17, 25].
Such a model fitting procedure can be incorporated in the
Multi-perspective Vision Studio to help analyze the target
object’s shape.

4.1 Density-based shape recognition method
for articulated objects

The model fitting method we present can be used for anal-
ysis of any 3D articulated non-rigid objects. In this work we
narrow its application to analyzing human figures. We have
an efficient way of constructing the volumetric shape esti-
mate of a human body. Using such a 3D shape estimate we
would like to locate the body and its constituent parts, and
estimate their shapes.

We model real world objects via parametric density fields
that are similar to potential field techniques [8], but are more
flexible in allowing for a wider class of density functions. An
object’s density field is a non-negative scalar function show-
ing how much this object differs from its environment at
each point in space. Given a density field, one can derive
many geometric and topological properties of the object it
represents. For example, a field’s iso-surface approximates
the object’s surface, and the field’s ridges correspond to the

object’s skeleton. Within the model fitting framework, den-
sity fields can be utilized in two ways: as a target shape
representation, and as a driving force for model fitting.

4.1.1 Formalism behind the method
We characterize the model of the object by an integrable

and bounded density function f (x, θ). For any model con-
figuration characterized by a parameter vector θ ∈ Rm,
f (x, θ) gives a non-negative density value at any x ∈ Rn.

For an occupancy map V ⊂ Rn, we define a measure of
fitness

F (θ) =

�
V

f (x, θ) dVx (1)

and solve the following optimization problem:

maximizeθ[F (θ)] subject to some constraints on θ

For most practical problems, this optimization calls for a nu-
meric solution. Suitable numerical integration and optimiza-
tion packages should be used for the problem at hand. In our
experiments, we used a midpoint quadrature rule and a pub-
licly available implementation of the Levenberg-Marquardt
non-linear minimization algorithm, commonly known by the
name MinPack.

4.1.2 Modeling 3D articulated objects
Complex articulated objects such as human or animal

bodies consist of many sub-parts and have a lot of non-rigid
tissue. Therefore, when dealing with articulated objects it
is often very desirable to utilize a composite density function
by combining densities of the components, and a hierarchical
model capturing both coarse (few parts) and fine (elaborate
sub-parts) object details.

Since a target object may consist of several moving parts
and sub-parts, we would like its cumulative density field to
consist of several component density fields and dependent
sub-fields:

f (x, θ) =
�

i
fi (x, θ)

Component densities usually represent individual body
parts or the sub-parts thereof. They are usually composed
out of some well known basic densities:

fi (x, θ) = gi (Aix; θ)

gi (x; θ) =
�

j
hj (xj ; θ)

where hj are some basic densities (often one-dimensional),
and Ai is a component-specific scale-rotate-shift operator.

4.1.3 Hierarchical model fitting
Occupancy maps for foreground objects, represented by

octrees, can be used for hierarchical model fitting. Different
octree levels can be matched by corresponding levels in the
model. At some octree level, the foreground object becomes
well localized and its major dimensions become evident. At
the next level, one can start distinguishing the object’s gross
body parts. At finer levels, the major body parts and joints
are well localized and can be reliably detected. The higher
(finer) levels of the hierarchy can supply additional informa-
tion for detailed recovery of small body parts such as hands
and fingers.

At its first level the model aims only at the torso. Once
the torso is localized, the model at its second level addition-
ally fits legs and arms. When locations of the gross body



parts are estimated, on the next level the model inherits
the previous estimations and refines the detail of the fore-
ground object by splitting parts into sub-parts. In this way,
the most detailed level of the hierarchy will have a good ini-
tial guess and thus less chance to get stuck at local minima
in the optimization process.

4.2 Experiments
In our current implementation, density based model fit-

ting runs at the client, because it relies on the results of
multiple volumetric queries merged by the client applica-
tion for a given volumetric frame. Since we are interested
in estimating human body figures, we modeled human body
parts as follows. For the head we used a product of three

bell-shaped densities given by e−(cx)2 , for legs and arms we
used tube-like densities composed as a product of two bell-
shaped densities and one plateau-shaped density given by

p (x; r) =

��
�

exp (x + r)2 x < −r
1 −r ≤ x ≤ r

exp (x − r)2 x > r

while the torso was modeled as a product of two plateau-
shaped and one asymmetric bell-shaped densities.

We were able to fit density based models to volumetric im-
ages of a person performing pointing gestures. Figure 8 ex-
hibits a subset of the source imagery for a single frame that
produces a typical multi-perspective scene shot. The volu-
metric reconstructions shown in Figure 9 are octrees of depth
8, as are the renderings of the density models restricted by
some iso-surfaces. The iso-surface renderings appear to be
smoother than the source occupancy maps because the den-
sity models are based on smooth density functions.

On a 1.4GHz Pentium4 PC one round of hierarchical fit
takes from 3 to 4 minutes depending on the scene complex-
ity and the initial guess. The most expensive computation
occurs in evaluating the objective function, which requires
3D numeric integration. We are working on implementing
the entire optimization procedure in the multi-perspective
vision studio parallel back-end.

5. CONCLUSIONS AND FUTURE WORK
We have presented a multi-perspective vision studio as a

flexible high performance framework for solving non-trivial
image processing and machine vision problems on multi-view
image sequences. The studio makes multi-view video se-
quence processing efficient and generic by

• abstracting multi-view image data from image sequence
acquisition facilities,

• storing and cataloging sequences in a high performance
distributed database,

• allowing customization of back-end processing services,
and

• serving multi-view data to various custom client appli-
cations.

We have described how the multi-perspective studio can
be used for complex 3D shape analysis applications that
include distributed volume reconstruction and density based
model fitting.

Our experimental results show that high performance comes
from

• an effective distribution of the multi-perspective im-
ages across the disk farm,

• frame grouping to improve workload balance, and

• an efficient strategy for projecting between the volume
and the images.

Our ongoing work includes

• the introduction of color and texture mapping on re-
constructed surfaces,

• employing a more flexible filter-based data server based
on the DataCutter Grid infrastructure [2, 1], and

• implementing the density-based model fitting proce-
dure in the data server.

Texture mapping will improve the presentation quality of
the reconstructed 3D image and will be based on building a
mesh given an occupancy map. The texture and color can
then be re-projected back from the original imagery into the
mesh patches.

DataCutter is a component-based framework for imple-
menting and efficiently executing data analysis applications
in the distributed, heterogeneous Grid environment. Em-
ploying a filter-based data server will allow for easier im-
plementation of additional image processing and vision ap-
plications, and and also allow parts of the application to
be run on processors other than the ones where the data
is stored so that additional computational resources can be
applied if needed. The ADR implementation requires that
the computations be performed on the processors that store
the data. Fortunately, the DataCutter framework also en-
ables us to reuse much of the application-specific code from
the ADR-based data server implementation.

Finally, the model fitting process is currently quite slow
because it is implemented as a sequential routine in the client
application. Model fitting can be parallelized and executed
in the data server, enabling interactive response times for
these complex tasks.

In the future, we hope that the multi-perspective vision
studio will become a useful research and development tool
for many interesting multi-sensor applications, not limited
to just optical sensors (e.g. video cameras), but also involov-
ing other non-optical imagery.

6. REFERENCES
[1] M. Beynon, C. Chang, U. Catalyurek, T. Kurc,

A. Sussman, H. Andrade, R. Ferreira, and J. Saltz.
Processing large-scale multidimensional data in
parallel and distributed environments. Parallel
Computing, 28(5):827–859, May 2002. Special issue on
Data Intensive Computing.

[2] M. D. Beynon, T. Kurc, U. Catalyurek, C. Chang,
A. Sussman, and J. Saltz. Distributed processing of
very large datasets with DataCutter. Parallel
Computing, 27(11):1457–1478, Oct. 2001.

[3] J. Bloomenthal and C. Lim. Skeletal methods of shape
manipulation. In Proc. of International Conference on
Shape Modeling and Applications, pages 44–47, 1999.

[4] E. Borovikov and L. Davis. A distributed system for
real-time volume reconstruction. In Proc. of Computer
Architectures for Machine Perception. IEEE
Computer Society, Sept. 2000.



Figure 8: A multi-perspective scene shot with source images and the corresponding silhouettes

Figure 9: Fitting density models (bottom row) to real images (top row)



[5] E. Borovikov, A. Sussman, and L. Davis. An efficient
system for multi-perspective imaging and volumetric
shape analysis. In Proceedings of Workshop on Parallel
and Distributed Computing in Image Processing,
Video Processing, and Multimedia, April 2001.

[6] A. Bottino and A. Laurentini. A silhouette-based
technique for the reconstruction of human movement.
Computer Vision and Image Understanding, 83, 2001.

[7] M. Cavazza, R. Earnshaw, N. Magnenat-Thalmann,
and D. Thalmann. Motion control of virtual humans.
IEEE Computer Graphics and Application,
18(5):24–31, 1998.

[8] J.-H. Chuang, C.-H. Tsai, and M.-C. Ko.
Skeletonization of three-dimensional object using
generalized potential field. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2000.

[9] L. Davis, E. Borovikov, R. Cutler, D. Harwood, and
T. Horprasert. Multi-perspective analysis of human
action. In Proceedings of Third International
Workshop on Cooperative Distributed Vision,
November 19-20, 1999.

[10] D. Dion, Jr., D. Laurendeau, and R. Bergevin.
Generalized cylinder extraction in range images. In
Proc. of International Conference on Recent Advances
in 3-D Digital Imaging and Modeling, 1997.

[11] F. Ferrie, J. Lagarde, and P. Whaite. Darboux frames,
snakes, and super-quadrics: Geometry from the
bottom up. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 15(8), 1993.

[12] D. M. Gavrila and L. S. Davis. 3-D model-based
tracking of humans in action: A multi-view approach.
In Proc. of IEEE International Conference on
Computer Vision and Pattern Recognition, 1996.

[13] P. Golland and W. E. L. Grimson. Fixed topology
skeletons. In Proc. of IEEE International Conference
on Computer Vision and Pattern Recognition, 2000.

[14] P. Havaldar and G. Medioni. Full volumetric
descriptions from three intensity images. IEEE
Transactions on Pattern Analysis and Machine
Intelligence, 20(5):540–545, May 1998.

[15] T. Kurc, U. Catalyurek, C. Chang, A. Sussman, and
J. Saltz. Visualization of large datasets with the
Active Data Repository. IEEE Computer Graphics
and Applications, 21(4):24–33, July/August 2001.

[16] T. Kurc, C. Chang, R. Ferreira, A. Sussman, and
J. Saltz. Querying very large multi-dimensional
datasets in ADR. In Proceedings of the 1999
ACM/IEEE SC99 Conference. ACM Press, Nov. 1999.

[17] J. Lee and T. L. Kunii. Model-based analysis of hand
posture. IEEE Computer Graphics and Applications,
15(5):77–86, 1995.

[18] B. Moon, H. Jagadish, C. Faloutsos, and J. Saltz.
Analysis of the clustering properties of the Hilbert
space-filling curve. IEEE Transactions on Knowledge
and Data Engineering, 13(1):124–141,
January/February 2001.

[19] B. Moon and J. H. Saltz. Scalability analysis of
declustering methods for multidimensional range
queries. IEEE Transactions on Knowledge and Data
Engineering, 10(2):310–327, March/April 1998.

[20] E.-J. Ong and S. Gong. Tracking hybrid 2D-3D
human models from multiple views. In Proceedings of

the IEEE International Workshop on Modeling People.
IEEE Computer Society Press, Los Alamitos, Calif.,
1998.

[21] H. Saito, S. Baba, M. Kimura, S. Vedula, and
T. Kanade. Appearance-based virtual view generation
of temporally-varying events from multi-camera
images in the 3D room. Technical Report
CMUCS99127, Computer Science Department,
Carnegie Mellon University, Pittsburgh, PA, Apr.
1999.

[22] S. Stillman, R. Tanawongsuwan, and I. Essa. A
system for tracking and recognizing multiple people
with multiple cameras. In Proc. Second Int’l Conf.
Audio- and Video-based Biometric Person
Authentication, pages 96–101, 1999.

[23] R. Szeliski. Rapid octree construction from image
sequences. Computer Vision Graphics and Image
Processing: Image Understanding, July 1993.

[24] A. Utsumi, H. Mori, J. Ohya, and M. Yachida.
Multiple-human tracking using multiple cameras. In
Proc. of the third IEEE Int’l Conf. Automatic Face
and Gesture Recognition (Nara, Japan). IEEE
Computer Society Press, Los Alamitos, Calif., 1998.

[25] M. Zerroug and R. Nevatia. Part-based 3D
descriptions of complex objects from a single image.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(9):835–848, September 1999.


