
An Efficient System for Multi-perspective Imaging and Volumetric Shape Analysis

Eugene Borovikov, Alan Sussman and Larry Davis
UMIACS and Department of Computer Science

University of Maryland, College Park, MD 20742
fyab,als,lsdg@cs.umd.edu

Abstract

We present a high performance system for efficient multi-
perspective image analysis on very large image datasets,
implemented as a customized extension of the Active Data
Repository (ADR) object-oriented framework. The result-
ing system provides a flexible framework for handling multi-
perspective video sequences in any parallel or distributed
computing environment that can support ADR. We have em-
ployed the framework to produce an efficient volumetric
shape analysis application implementation. Initial perfor-
mance results show that using an effective data distribution
algorithm to produce good load balancing allows the ADR
implementation to achieve scalable high performance.

1. Introduction

Traditionally, research in image processing and computer
vision systems has dealt with images or sequences of images
shot from a single camera (mono-vision) or two cameras
(stereo-vision). Digital video streams for those systems, al-
though potentially large, do not require any special storage
handling - generic file systems suffice. Falling hardware
prices along with the modern growth of interest in vision-
based interfaces, virtualized reality and ubiquitous visual
computing gave a rise to multi-perspective vision, i.e. sys-
tems with multiple (more than two) cameras usually spread
around a room, that shoot the scene from multiple perspec-
tives. Multiple video streams produced this way generate
very large amounts of image data that can become unman-
ageable unless there is an efficient way to store, catalog and
process them.

Consider, for example, the Keck Lab (Figure 1) at the
University of Maryland [5]. It consists of 64 cameras syn-
chronously capturing video streams at a rate of up to 85
frames per second, with each frame being 644 � 484 � 1
bytes. One minute of such multi-perspective video requires
about 95 GBytes of storage. Managing such quantities of
data on a single PC or workstation, while feasible, will have

Figure 1. Keck Lab model

serious performance problems for the foreseeable future.
To improve performance, the data should be stored and pro-
cessed on a parallel machine or a cluster of workstations
employing an efficient software system for providing the
desired functionality.

To aid in efficiently implementing storage and processing
of multi-perspective images, we employ an object-oriented
framework called the Active Data Repository (ADR) [3, 4,
7, 8], that has been developed at the University of Maryland
for managing and processing large amounts of scientific
data on a parallel or distributed system. In this paper we
describe how to customize ADR for building an efficient
and flexible framework for storing multi-perspective image
data and performing visual analysis. Further, we describe
a volumetric shape recovery and analysis application that is
based on this framework, and give some general guidelines
on developing multi-perspective imaging applications using
the system.



Figure 2. ADR-based application structure

2. Multi-perspective Imaging System

The core of our multi-perspective imaging framework is
based on ADR customized for managing multi-perspective
image sequences. As a tool, ADR is meant to be customized
for a given application. With a number of other multi-
perspective imaging applications in mind, we have built
a relatively generic multi-perspective imaging framework
based on ADR. A typical ADR-based application has the
structure shown in Figure 2.

ADR is an object-oriented framework designed to ef-
ficiently integrate application-specific processing with the
storage and retrieval of multi-dimensional datasets on a par-
allel machine or cluster of workstations with a disk farm.
ADR consists of a set of modular services, implemented as a
C++ class library, and a runtime system. Several of the ser-
vices allow customization for user-defined processing. An
application implemented using ADR consists of one or more
clients, a front-end process, and a customized back-end The
front-end interacts with clients, translates client requests into
queries and sends one or more queries to the parallel back-
end. Since the clients can connect and generate queries in an
asynchronous manner, the existence of a front-end relieves
the back-end from being interrupted by clients during pro-
cessing of queries. The back-end is responsible for storing
datasets and carrying out application-specific processing of
the data on the parallel machine, eventually returning results
to the clients.

The ADR framework has been used to provide support
for storage and processing of large datasets in a wide range of
scientific application areas. We have used ADR to develop
applications in diverse fields, including coupling of multi-
ple scientific simulation codes [10], analysis and processing
of satellite datasets [13], analysis and visualization of mi-
croscopy data [1], and volume rendering and iso-surface
rendering to support visualization of very large datasets [9].

The image analysis framework discussed in this paper
customizes ADR’s parallel back-end (PBE) and front-end
(FE). The implementation also provides a tool for loading
and cataloging multi-perspective sequences of image data.
This leaves the image analysis application developer with
the task of providing an application-specific front-end and
a client. However, the application developer can also fur-
ther customize the PBE and FE to meet the needs of his/her
application that works on multi-perspective image data. An
application developer is allowed to both provide additional
application-specific image processing functions and also im-
plement other additions to ADR’s customizable services.

The customized PBE and FE for the framework are de-
scribed in Sections 2.2 and 2.3, respectively, but first we
describe the multi-perspective image datasets.

2.1. Multi-perspective image data and ADR

A multi-perspective video sequence constitutes a sin-
gle image dataset. A data element (chunk) is a single
image whose attributes are <camera index, time index>.
To populate the database, a user employs the data loader
tool supplied with the framework. The data loader takes
multi-perspective data stored in flat files, computes chunk
placement information for the disks available in the parallel
system according to some user-supplied strategy (ADR sup-
plies a default strategy based on space-filling curves), moves
the chunks to their destination database files, and indexes
them accordingly. Optionally, the user can move data files
to the disks manually (if the chunks are already declustered
across the data files) and provide a custom index. A multi-
perspective data set also requires camera configuration data
supplied as meta-data files. The configuration information
is also supplied by the user.

Once image datasets are loaded into and registered with
ADR, the system can satisfy requests from queries produced
by client applications. Queries are processed by both an ap-
plicationFE and ADR FE before being executed on the PBE.
The FE stores metadata information about datasets and re-
formulates user queries in terms of standard or custom regis-
tered indexes. In general, the FE acts as an intermediary be-
tween clients producing requests and the back-end that stores
data and processes requests on stored datasets. The appli-
cation FE is responsible for any application-specific com-
munication protocols with the client, and translates client
requests into a standard form that the ADR back-end re-
quires. The ADR FE schedules translated requests onto the
back-end nodes, and verifies that the requests are properly
formed.

There is one important restriction on the user requests
imposed by ADR: operations on data elements have to be
associative and commutative. This is acceptable for many
applications (e.g. volumetric reconstruction), since aggre-



gation of multi-perspective data often complies with those
requirements. We now describe the ADR customization
provided by the image analysis framework.

2.2. The ADR Parallel Back-end

The image datasets are distributed on and managed by
parallel back-end (PBE) nodes, which may be part of a
distributed memory parallel machine or a cluster of work-
stations. The back-end is responsible for storing the datasets
and carrying out the requested input data retrieval, projec-
tion to the output space, and aggregation operations. The
default index service maps a four-dimensional query region
(three for space, one for time) into a set of relevant chunks.
This is accomplished via a camera index lookup computed
for each query region as needed. The default projection
maps the <camera-index, time-index> pair to the <time-
index>, to allow aggregation across all cameras that view a
spatial region at a given time. No default aggregation opera-
tion is supplied, since aggregation is application dependent.
Any default services can be customized by the application
developer.

2.3. Application and ADR Front-end

The application front-end interacts with clients via an
application-specific communication protocol, and translates
queries into a common format for the ADR front-end, which
will send the reformulated query to the PBE. The application
FE’s purpose is to maintain meta-information about datasets
(e.g., video sequence name, number of views, frame rate)
and respond to queries coming from client applications. The
ADR FE uses its query interface service to interact with ap-
plication front-ends, and its query submission service to
schedule multiple queries received from one or more appli-
cation front-ends and submit them in batches to the PBE.

3. A Volumetric Shape Analysis Application

We illustrate the utility of the proposed framework for
multi-perspective imaging applications via a parallel vol-
ume reconstruction and 3D shape analysis application im-
plemented using the framework. The applicationuses multi-
perspective image data to reconstruct the volumetric shape
of a foreground object. The application then can render
the volume from an arbitrary vantage point at any point in
time and allow users to analyze the 3D shape by requesting
region-varying resolution in the reconstruction. The vol-
umetric reconstruction is based on the distributed volume
intersection technique described in [2, 5].

The reconstructed volume is represented as an occupancy
map encoded by an octree, whose space requirements are
exponential in the depth of reconstruction. To compactly

Figure 3. Reconstructed volume

encode the octree, in order to minimize the network band-
width required to send volumes to clients, it is encoded as a
byte array in DFS-order, as was proposed in [2]. We have
made an improvement to that encoding by noticing that it
is sufficient to keep only leaf nodes, encoding them as bit-
arrays whenever possible (similar approaches are discussed
in [12] and [11]). As a result, a typical volumetric recon-
struction of depth 8 requires about 50 KB for the octree,
while the previously proposed system required about 200
KB. However, the octree handling routines have become
more complex and expensive.

A database inquiry involves specifying a 3D region, a
time range and a volumetric reconstruction resolution. The
query result is a multi-resolution reconstruction of the fore-
ground object region lying within the query region. This
information can be used for 3D shape analysis and 3D track-
ing.

The client application is a program run by a user. It gener-
ates queries based on user requirements, submits them to the
application FE described earlier, and receives data from the
PBE nodes for further application-specific post-processing.
The volume reconstruction application implements a GUI
client in C++. The client provides a user interface for spec-
ifying a user query and presents the query results via a vol-
umetric viewer implemented in OpenGL. Figure 3 shows a
typical real-world 3D reconstruction rendered from a num-
ber of view points.



A user query is specified by Volume(time-range, space-
range, reconstruction-resolution). The result of a query is
an occupancy map of the foreground object in the given 3D
region at a given resolution over the specified time period.
A series of such queries produces a union of volumetric
reconstructions, each at a different resolution. The result-
ing shape is displayed in a client window from a specified
perspective.

4. Experiments

Our initial experiments target the volumetric shape anal-
ysis application. We have considered scenarios varying the
data distribution of the input image dataset across the disks
of the parallel machine and varying the number of proces-
sors in the ADR parallel back-end to evaluate the system’s
overall performance and scalability.

The input attribute space is two-dimensional, consist-
ing of <camera-index, time-index> pairs, and most of
the datasets are likely to have camera max index �

time max index, with the number of views comparable
with the number of processors. With this observation in
hand, we have considered various strategies for distributing
data (images) onto the disks of the parallel or distributed
machine.

It would seem ”natural” to distribute data in a view
per processor fashion. This trivial distribution might pro-
vide a reasonable workload balance for the cases where
views count = processors count and all views are in-
volved in the query. It balances work poorly when only a
few views are queried, for example when only a part of the
scene is to be reconstructed and not all cameras can view that
part of the scene. We therefore require a more sophisticated
approach.

A round robin distribution in a single data dimension
also runs the risk of distributing data similar to the view per
node approach. The worst case for this distribution occurs
when

dim max index mod processors count = 0,
but even in other cases, the method distributes data peri-
odically, which leads to a poor workload balance for some
query classes.

Consider the following example, where the time-index
is increasing from left to right, and the camera-index is
increasing from top to bottom:

0 4 3 2 1 0 4 3 ...
1 0 4 3 2 1 0 4 ...
2 1 0 4 3 2 1 0 ...
3 2 1 0 4 3 2 1 ...

This example represents video sequences from four cam-
eras round-robin-distributed among five disks. Now, con-
sider retrieving data for camera 0 and 2 for timesteps 0

throughT taking every fifth frame: we will end up utilizing
only two out of four disks (0 and 2), just as if we had a view
per node distribution.

One method that does not have such problems is a ran-
dom distribution, which relies on a good random number
generator. Note that a pseudo-random generator for the
2D case would be difficult,or impossible, to use for higher-
dimensional input datasets. Therefore this approach might
not be practical for high-dimensional input data, and also
is not guaranteed to always provide an even distribution of
data across the disks.

Hilbert space-filling curves [6] are a more general ap-
proach for input data distribution. Space-filling curve tech-
niques allow distributing data evenly among processors
while declustering data items that are close to one another
in multiple dimensions. This should provide a good work-
load distribution for the range queries that the ADR-based
system will be executing.

Our preliminary experiments tested the random and
Hilbert curve data distributions. Our dataset consists of
400-frame sequences captured synchronously by 13 color
cameras in the Keck Lab. Both distributions (random and
Hilbert curve) partitioned the data fairly evenly onto the
available disks. Therefore, querying the full dataset should
have a good workload balance. The ADR parallel back-
end was run on a Linux PC cluster consisting of 16 dual-
processor Pentium-II 450MHz nodes with 256MB memory
and one disk, interconnected via switched Gigabit Ethernet.

The query universe is a 2 � 2 � 2 meter cube centered
at (1000; 700; 800) [mm] with respect to the camera cali-
bration origin. Figures 4 and 5 show the workload balance
results and execution times for the Hilbert curve and ran-
dom data distributions, respectively, for three test queries.
The test queries all cover the entire 3D volume, with one
query covering all 400 time steps (frames) from 0 through
399, the second skipping every other frame for a total of 200
frames, and the third selecting every fourth time step for a
total of 100 frames. Results are shown for both four and
eight processors.

The results show that Hilbert curve declustering provides
a completely even distributionof the data across all the pro-
cessors/disks. Hilbert curves also provide good decluster-
ing for the queries that access only part of the input image
datasets, as seen by the low variance in the number of images
accessed per processor. The random declustering does not
provide a completely even distribution of the data across
all processors, but actually shows even lower variance in
the number of images accessed per processor than does the
Hilbert curve declustering for partial dataset queries.

In looking at query execution times, we see that the
Hilbert curve declustering always provides better overall
performance than random declustering, most likely because
of better local disk access patterns on the processors (fewer



Images per processor
proc# 100 frames 200 frames 400 frames

0 390 700 1300
1 310 632 1300
2 294 688 1300
3 306 600 1300

std. dev. 38 38 0

Execution time 204 415 830
(sec)

(a) 4 processors

Images per processor
proc# 100 frames 200 frames 400 frames

0 232 390 650
1 152 276 650
2 110 294 650
3 156 340 650
4 158 310 650
5 158 356 650
6 184 374 650
7 150 260 650

std. dev. 35 44 0

Execution time 138 270 543
(sec)

(b) 8 processors

Figure 4. Hilbert-curve declustering - images
retrieved/processed per processor and query
execution times, on four and eight proces-
sors

Images per processor
proc# 100 frames 200 frames 400 frames

0 315 655 1309
1 303 680 1263
2 293 651 1247
3 328 658 1310

std. dev. 25 11 38

Execution time 210 435 850
(sec)

(a) 4 processors

Images per processor
proc# 100 frames 200 frames 400 frames

0 164 338 673
1 150 311 650
2 156 312 633
3 171 336 651
4 168 334 667
5 182 365 672
6 158 328 623
7 171 337 676

std. dev. 9 26 34

Execution time 155 314 621
(sec)

(b) 8 processors

Figure 5. Random distribution declustering
- images retrieved/processed per processor
and query execution times, on four and eight
processors



disk seeks). We will be investigating this effect further,
and will report on those results at the workshop. Finally,
the results show that the ADR implementation achieves rea-
sonable speedups going from four to eight processors, with
somewhat better speedup attained with the Hilbert curve
declustering, especially on the largest query (400 frames).
This shows that system performance looks promising for the
much larger datasets that will be produced and processed in
future applications within the framework. We will present
results on sixteen processors at the workshop, and will also
be running on much larger machine configuration in the fu-
ture (several ADR applications have been run on up to 128
processors).

5. Conclusions

We have shown that ADR can be customized to be ef-
ficiently used for multi-perspective imaging and 3D shape
analysis. We have introduced a multi-perspective imaging
framework and used it to create a 3D shape analysis ap-
plication. Basing the system on ADR ensures portability
across parallel platforms and system robustness while han-
dling large datasets. Our initial experiments show that we
can achieve good workload balance from a straightforward
Hilbert curve data declustering scheme, and that with a good
workload balance the system scales (at least up to eight pro-
cessors). Future work will investigate the behavior of the
system on larger datasets and larger machine configurations.

We will also be investigating additional multi-perspective
applications, including

� 3D object tracking via adaptive queries and query
pipelining,

� view interpolationvia multi-view image rendering, and

� smart environment management via all of the above
techniques with other application-specific processing

Acknowledgments

This research was supported by the National Sci-
ence Foundation under Grants #ACI-9982087 and #ACI-
9619020 (UC Subcontract # 10152408).

We would also like to acknowledge the assistance of
Chialin Chang and Tahsin Kurc on various ADR implemen-
tation issues.

References

[1] A. Afework, M. D. Beynon, F. Bustamante, A. Demarzo,
R. Ferreira, R. Miller, M. Silberman, J. Saltz, A. Suss-
man, and H. Tsang. Digital dynamic telepathology - the

Virtual Microscope. In Proceedings of the 1998 AMIA An-
nual Fall Symposium. American Medical Informatics Asso-
ciation, Nov. 1998.

[2] E. Borovikov. A distributed system for real-time volume
reconstruction. In Computer Architectures for Machine
Perseption. IEEE Computer Society, Sept. 2000.

[3] C. Chang, R. Ferreira, A. Sussman, and J. Saltz. Infras-
tructure for building parallel database systems for multi-
dimensional data. In Proceedings of the Second Merged
IPPS/SPDP Symposiums. IEEE Computer Society Press,
Apr. 1999.

[4] C. Chang, T. Kurc, A. Sussman, and J. Saltz. Optimiz-
ing retrieval and processing of multi-dimensional scientific
datasets. In Proceedings of the Third Merged IPPS/SPDP
(14th International Parallel Processing Symposium & 11th
Symposium on Parallel and Distributed Processing). IEEE
Computer Society Press, Los Alamitos, Calif., May 2000.

[5] L. Davis, E. Borovikov, R. Cutler, D. Harwood, and T. Hor-
prasert. Multi-perspective analysis of human action. In Pro-
ceedings of Third International Workshop on Cooperative
Distributed Vision, November 19-20, 1999.

[6] C. Faloutsos and P. Bhagwat. Declustering using fractals. In
Proceedings of the 2nd International Conference on Paral-
lel and Distributed Information Systems, pages 18–25, Jan.
1993.

[7] R. Ferreira, T. Kurc, M. Beynon, C. Chang, A. Sussman,
and J. Saltz. Object-relational queries into multi-dimensional
databases with the active data repository. Parallel Processing
Letters, 9(2):173–195, 1999.

[8] T. Kurc, C. Chang, R. Ferreira, A. Sussman, and J. Saltz.
Querying very large multi-dimensional datasets in ADR. In
Proceedings of the 1999 ACM/IEEE SC99 Conference. ACM
Press, 1999.

[9] T. Kurc, Ümit Çatalyürek, C. Chang, and J. Saltz. Ex-
ploration and visualization of very large datasets with the
active data repository. Technical Report CS-TR-4208 and
UMIACS-TR-2001-04, University of Maryland, Depart-
ment of Computer Science and UMIACS, Jan. 2001. Sub-
mitted to IEEE Computer Graphics and Applications.

[10] T. M. Kurc, A. Sussman, and J. Saltz. Coupling multiple
simulations via a high performance customizable database
system. In Proceedings of the Ninth SIAM Conference on
Parallel Processing for Scientific Computing. SIAM, Mar.
1999.

[11] G. Lohmann. Volumetric Image Analysis. Willey and Teub-
ner, 1998.

[12] H. Samet. Applications of Spatial Data Structures. Addison-
Wesley Publishing Company, Inc., 1990.

[13] C. T. Shock, C. Chang, B. Moon, A. Acharya, L. Davis,
J. Saltz, and A. Sussman. The design and evaluation of a
high-performance earth science database. Parallel Comput-
ing, 24(1):65–90, Jan. 1998.


