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Abstract

We introduce a generic and efficient method for 2D
and 3D shape estimation via density fields. Our method
models shape as a density map and uses the notion of
density to fit a model to a rapidly computed occupancy
map of the foreground object. We show how to wutilize
hierarchical (pyramid-like) object segmentation data to
reqularize a hierarchical model fitting. With primary
focus on estimating 3D shapes of non-rigid articulated
objects such as human bodies, we illustrate our ap-
proach with examples of efficient model fitting to 3D
occupancy maps of human figures. We also discuss a
number of extensions of our method to applications in-
volving non-rigid object tracking and movement analy-
S18.

1 Introduction

Describing shapes and motion of non-rigid objects
is not a trivial task. While there does not seem
to be a general recipe for determining the shape of
a generic non-rigid object with subsequent tracking
thereof, some approaches can efficiently utilize domain-
specific knowledge to build models of objects and track
them. The work described in this paper is primarily
motivated by the research in 3D human body shape
and movement analysis being carried out in a multi-
perspective vision laboratory. The research aims at es-
timating 3D shapes of articulated objects (specifically,
human bodies) and describing their motion.

There were numerous approaches to multi-
perspective detection and tracking of articulated
objects, in general, and human body figures in
particular.

The simplest techniques [9, 10] used geometric prim-

itives, e.g. ellipsoids, to approximate the object’s con-
stituent parts that are restricted by some high-level
constraints on their positions, orientations and con-
nections. The resulting models are fairly elaborate,
yet not difficult to fit; but such methods could produce
inexact approximations of the target objects primarily
because not everything can be well approximated with
a quadric.

More sophisticated methods used generalized cylin-
ders [8, 12, 17], which sometimes provide a precision
advantage over simpler geometric primitives, but still
suffer from one significant drawback — bounded model
pieces provided very little clue outside their bound-
aries as to where to drive the model fitting process,
especially when the initial guess is poor. The methods
also are sensitive to noise in the range/contour data on
which they generally relied.

Skeleton based models are well suited for modeling
articulated objects. Traditionally, they rely on medial
manifolds (axes and/or surfaces) to reduce the volume
of data to be dealt with [1, 2, 6, 11, 13]. While being
good at preserving the target object’s topology, they
often are sensitive to segmentation noise and boundary
curvature.

Below we briefly discuss papers that have particular
relevance to the current research.

Gavrila and Davis [10] extract the foreground object
contours and model a human body as a hierarchical set
of super-quadrics. Their technique handles complex oc-
clusions including multiple subjects, but makes many
restrictive assumptions on the human body shape sur-
face (using super-quadrics).

Bottino and Laurentini [4] utilize rapid volumetric
reconstructions and build a piecewise linear approxi-
mation to the human body surface. This technique
models the body by approximating the body surface,
but does not use the volumetric aspect of the precom-



puted reconstructions.

Ong and Gong [14] rely on the object’s contour and
use stick-based models to describe the upper body.
Their technique is shown to work well for human up-
per body in conditions where the foreground object is
easy to segment. Golland and Grimson [11] use pre-
segmented body blobs to extract fixed topology skele-
tons, but the method is not shown to be easily gener-
alizable to 3D articulated objects. Chuang [6] uses a
generalized potential field to extract a 3D object skele-
ton, but does not explicitly show how to apply this
technique for human body modeling. Carr et al [5] in-
troduce a precise and efficient method for the target
object’s surface reconstruction via zero level implicit
surfaces of radial basis functions (RBFSs), but their
method relies on exact range data (e.g. from a laser
rangefinder), and therefore is hard to apply to dynamic
scenes.

Plankers and Fua [16, 15] presented a framework for
modeling and tracking human bodies using multi-layer
models that utilize a potential field from a collection of
soft meta-balls worn on a given skeleton. Their method
fits an implicit iso-surface of the resulting potential
field into the given depth maps and object silhouette
contours. This fitting method is capable of realistic
human body modeling, but it primarily targets object
surface and requires a fairly good initial model guess
and many meta-balls for complex surface modeling.

In this paper, we propose a generic and efficient
method for 2D and 3D shape estimation via density
fields. Our method models shape as a density map and
uses the notion of density to fit a model to a rapidly
computed occupancy map of the foreground object.
We introduce a system for generating and manipulat-
ing complex density-based models out of application-
specific density building blocks, and show how to use
these models for both object recognition and shape vi-
sualization.

With primary focus on estimating 3D shapes of non-
rigid articulated objects such as human bodies, we il-
lustrate our approach with examples of efficient model
fitting to 3D occupancy maps of human figures. We
also discuss a number of extensions of our method
to applications involving non-rigid object tracking and
movement analysis.

2 Method motivation

Putting aside for a moment all the variety of
shapes and movements that real-world non-rigid ob-
jects present us with, we focus primarily on estimating
the 3D shape of such elaborate articulated objects as
human bodies. Suppose, we have a human subject pos-

ing for us in a multi-perspective video capturing facility
and we have a fast way of segmenting the body image
e.g. by using the real-time volumetric segmentation
algorithm described in [3]. The global task is to

1. locate the body and its constituent parts,
2. estimate their shapes,
3. track individual body parts, and

4. recognize and interpret (series of) gestures.

The scope of this paper aims at the first two sub-
goals, touches upon the third and leaves the fourth
for future research. Going along these lines necessi-
tates having an efficient shape estimation and repre-
sentation framework suitable for further use in track-
ing and movement analysis applications. This, in turn,
requires an economical, yet elaborate and extensible,
shape description apparatus equipped with a proce-
dure for efficient recovery of a 3D object shape from
multi-perspective data.

2.1 A notion of density field

We propose to model real world objects via paramet-
ric density fields. An object’s density field (or density
function) is a non-negative scalar function (formally
defined in Section 3) showing how much this object dif-
fers from its environment at each point of space. The
object’s density field is positive (or no less than a pos-
itive €, for a threshold-based formulation) where the
object is present, and zero (or less than ) where it is
not. Having the object’s density field, we can derive
and reason about many of the object’s geometric and
topological properties. For instance, a field’s e-level
iso-surface is an estimate of the object’s surface, while
the field’s ridges would correspond to the object’s skele-
ton. Additionally, the density field iso-surfaces can be
used to extract the object’s connectivity information.

There are, certainly, many ways to define a density
field for an object. For example, the left-most binary
image of a printed character (fig.1) is that character’s
density function, which merely indicates presence or
absence of ink at every pixel. This binary-valued func-
tion with a discrete 2D domain is given explicitly by the
binary image itself. It clearly differentiates the object
from its environment and captures the objects’ shape,
thus allowing one to use this map in e.g. correlation
based template matching.

This function, however, is too strict (due to its dis-
crete nature): it corresponds to a single image of the
character that in reality can be typed or printed in a
variety of blur levels and shape variations (e.g. scales,
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Figure 1. Different styles of the same character

Figure 2. Example of a character density map surface
with an iso-line plot

faces, emphases as in fig.1), which this particular den-
sity function does not capture.

Such deviations in the same object’s imagery effec-
tively introduce a class of similar objects that no single
density function can capture. They, however, can be
treated by a family of similar density functions, i.e. a
parametric family of densities with a continuous do-
main and a set of parameters corresponding to posi-
tion, orientation, scale, local and global density band-
width, etc. An example plot of such density for the
above example is given in fig.2.Such a density func-
tion can be given by a character contour parameteri-
zation x (t), t € R, equipped with a 1-D density dis-
tribution for each value of t, i.e. ¢, (s), where axis
s is collinear to the contour’s local normal n;. Both
the contour x (t) and the local density ¢, (s) can and
should depend on some parameters (gathered in a vec-
tor 0) that make the resulting two-dimensional model
density f (x;6) = ¢yx;0) (s (x);6) suitable to fit to any
instance of the given character’s image.

Note that one can analogously define parametric
density models in 3D (or any dimensions, for that mat-
ter) and fit them to the given imagery. We shall see
some examples of that in the sections to come.

2.2 Two-fold use of the density field

Going the model fitting route, we will see that den-
sity fields can be utilized in two ways:

e as target shape representation, and

e as model fitting driving force.

Aside from a compact yet flexible shape representa-
tion (seen e.g. in the above example), a correctly cho-
sen parametric density field with infinite spatial sup-
port will be capable of driving the model fitting method
(described in the next section) to some optimal solution
(within an appropriate class).

In the following sections, we give a formal defini-
tion for a density function, describe the model fitting
method and explain how to apply it to complex artic-
ulated objects and further focus on modeling human
bodies. We also discuss an approach for defining and
fitting hierarchical models to hierarchical volumetric
data (such as octrees) and address the use of density-
based models in 3D tracking.

3 Density based model fitting

To formalize the density based model fitting
method, we need a density function that would model
the object’s density field, and help drive the model fit-
ting process to a solution.

3.1 Formalism behind the method

We characterize the model of the object by a density
function
f:R"x R™— Ry U{0}

For any model configuration characterized by a param-
eter vector @ € R™, f (x,0) gives a density value at any
x € R"™. Additionally, for some positive M and D, and
for V@, the density function has to satisfy

f(x,0)dVe =M
R’V‘l,

mgxf (x,0)=D

(conservation)

(consistency)

The (mass) conservation condition naturally follows
from the requirement that the object’s mass remains
constant during the model fitting process. The (den-
sity) consistency condition ensures that the density
peaks remain at a certain level. These conditions de-
termine the solution’s scale and ensures its feasibility.
Refer to sec. 3.3 for further details.



Now, suppose that the object of interest has been
segmented out from the source image and its occu-
pancy map V. C R" (n = 2 or 3) has been com-
puted. Intuitively, we say that a model fits the object
optimally when the object’s occupancy map is at the
model’s densest region. To formulate this in mathe-
matical terms, we define a measure of fitness

F(6)= | f(x,0)dVx (1)
/

and solve the following optimization problem:

max‘igmizeF ©) (2)

subject to domain-specific constraints on 6

Although there are some (mostly artificial) situa-
tions for which it is possible to solve the above problem
analytically, most practical problems that we encoun-
tered required density functions that made analytic so-
lutions of (2) hardly tractable. Therefore, here we con-
centrate on numerical optimization and adapt existing
minimization solvers (e.g. provided with optimization
toolbox in Matlab) to obtain numerical solutions.

3.2 A simple example

Suppose, we are asked to fit a line segment to a
three-dimensional box using the inverted distance as a
density map. For V = [0,.5] x [0,.5] x [0, 1], define

f(x,0)=(1+d(x,a,b)) "

where 8 = (a,b), a,b € R? are the two end points of
a line segment, d (x,a,b) = dist* (x,ab), and dist is a
distance from point x € R? to the segment ab. Notice
that our density is

e consistent, since Va, b maxy m =1, and

e conservative, provided |a — b| = const.

For this simple problem we can even relax the
conservation requirement and solve the following opti-
mization problem:

1 . 3
IE%JX/ dex, subject to a, b €0, 1]
v

A numeric solution to this problem yields

a =

(10.24997 0.24997 0.01226 )"
(10.25006 0.25006 0.99987 )"
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Figure 3. A line segment model fit for a 3D box

which is graphically shown in fig.3.

With a strict conservation constraint (and thus
with more information about the target solution), e.g.
|a —b| = 1, the above optimization problem yields a
similar numeric solution

(10.25018 0.25018 0.02931 )"
(10.24994 0.24993 1.02939 )"

a =

b =

but would converge faster.
3.3 Conservation and consistency vs scale

The conservation requirement essentially determines
the solution’s scale (with respect to the spatial vari-
ables), which can either be given up-front or estimated
as above within certain boundaries. The consistency
requirement deals with the field’s range scale, and its
importance is in avoiding the density field degeneration
to something like a §-distribution.

Since most practical density fields tend to be
bounded and finitely integrable, both conditions are
often easy to satisfy by re-scaling the field at hand.
Indeed, suppose we are given a density g such that
vl € R™,

/ g(x,0)dVyx = A, and maxg(x,0) =B  (3)

Find «, 8 > 0 such that for f(x,0) = ag(0x,8),
both conservation and consistency conditions hold:

[ @9 (8%, 6) dVie = M a=2
{H?axxag(ﬁxag):D & ﬁ:@

This essentially gives us a density normalization
tool. For M = D = 1 and some density ¢ as in (3)



choose f (x,0) = %g (,”/ %x, 0) satisfying the normal-
ized conditions:

f(x,0)dVy = 1
R'n.

max f (x,0) =1

(normalized conservation)

(normalized consistency)

We, therefore, are free to formulate our problems and
work in either normalized (dimensionless) or physi-
cal (not normalized) or any other scale domain of our
choice.

For some problems it is convenient to relax either
conservation or consistency requirements by requiring
only some upper bounds:

f(x,0)dVxe <M
R'n.

max f (x,0) < D

(relaxed conservation)

(relaxed consistency)
This allows for some freedom in optimizing for scale.
3.4 A note on convergence

It should be evident that the method’s convergence
behavior is strongly affected by the choice of the den-
sity function. Different applications may treat the no-
tion of density differently. For our method, we require
the density function to be finitely integrable with re-
spect to the spatial variables. It does not have to be
differentiable or even continuous with respect to the
parameters provided the optimization procedure can
handle non-smooth objective functions. One should
exercise particular caution when choosing to deal with
finite support densities because the method won’t have
anything to drive it to a solution if the data happens
to be outside of the density function’s support.

3.5 Relevance to other techniques

Note that some traditional model fitting techniques
(e.g. based on super-quadrics or medial sets) can be
re-formulated in the given framework with correspond-
ing density functions. Indeed, a surface fit, is noth-
ing more but satisfying a constraint on a density iso-
surface, while a medial axes/surface fit corresponds to
a constraint satisfaction on the density’s ridges. Fur-
thermore, the density based modeling provides a more
general machinery to describe

e asymmetric body parts (bones are not always me-
dial axes),

e complex topology (super quadrics do not handle
holes well),

e natural non rigid deformation e.g. muscle expan-
sion and contraction

and, perhaps, much more, all within the same frame-
work.

4 Modeling articulated objects

Articulate objects such as human or animal bodies
are complex. They consist of many sub-parts and have
a lot of non-rigid tissue. Even most elaborate models of
such objects are still limited in their ability to capture
all the shape and/or movement variations an object
can undergo. All of them target some subset of features
modeled to a certain precision. Thus, in any modeling
approach among everything else, there are always two
things to address:

e resolution: features to model, and
e precision: how exact the model should be.

All that depends on the application at hand, but
it is possible to develop a flexible framework allowing
arbitrary model resolution and precision.

In a multi-perspective laboratory (e.g. [7]), the
smallest reliably segmentable feature would be no
smaller than a human fist. This constrains both the
model’s maximal resolution and its feasible precision,
but even models representing the human body up to
a hand are fairly complex and can be difficult to fit
directly to the data. Naturally, when dealing with ar-
ticulated objects it is often very desirable to utilize

e a composite density function by combining densi-
ties of the components, and

e a hierarchical model going from coarse (few parts)
to fine (elaborate sub-parts) model resolution.

4.1 Cumulative densities

Since a target object may consist of several moving
parts and sub-parts, we would like its corresponding
density field to consist of several fields and dependent

sub-fields:
f(x,0) =3 fi(x0) (4)

where f;’s are the densities of the respective constituent
parts. Note that with f;’s being conservative and con-
sistent, the resulting density is conservative but only
relaxed-consistent. Indeed, VO € R™

f (Xve) dVy = Z

fi(x,0)dVe = M, =M
R’Il Z R’ﬂ ( ;



m}.‘ztxf(xﬁ) Sngxfi (xﬁ)zZDi =D

The effect of this relaxed consistency is two-fold. On
one hand it opens up a window for some scale varia-
tions, while on the other hand it validates possible and
undesired part interpenetration. To avoid the latter
in practical problems, we enforce a cumulative consis-
tency constraint for some € > 0

mgxf (x,0) =¢+ max max fi (x,0) (5)

4.2 Component densities

Individual component densities are the building
blocks of the model’s cumulative density function.
Component densities usually represent individual body
parts or the sub-parts thereof. A model designer can
either specify (and implement) these functions directly
or compose them as products of some well known (li-
brary) densities. In the latter case, a component den-
sity would be given as

g(X;0)=ng (x;;0)

where g; is a library density with x; being a d;-
dimensional sub-vector of x, and }_;d; = n. In the
simplest case d; = 1, and g; is some 1D density. In
more complicated cases when d; > 1, the correspond-
ing g; can be inductively assembled via conditional and
lower dimension densities e.g.

'7wdj) =

h(Tpq1, .-

95 (x1,..

L xg T, wk) B2, w)

4.3 Hierarchical fitting

For elaborate models, the resulting density function
is complex and often results in a highly non-linear ob-
jective function that has a lot of local extrema, and
thus is difficult to optimize. To overcome this diffi-
culty, we propose a hierarchical coarse-to-fine modeling
approach.

Often, occupancy maps can be efficiently computed
in pyramid-like fashion, e.g. as quad- or oct-trees. In
such cases, levels in the occupancy map can naturally
be matched by corresponding levels in the model. As
each subsequent level in the occupancy map hierarchy
describes the object more accurately than its prede-
cessor, each subsequent level in the model adds more
details to the object’s description.

Consider, for instance, human body shape volu-
metric reconstructions via silhouette visual cone in-
tersections that can be done efficiently [3] in a multi-
perspective lab. The program takes a multi-perspective

snapshot of the foreground object and computes a set
of corresponding silhouettes, which are used for visual
cone intersection. A typical hierarchy of resolution-
increasing volume reconstructions is shown in fig.4.
Each level is represented by an octree.

We observe that the first three (coarsest) levels do
not let us recognize anything. Starting at level 4 the
foreground object is well localized and its major dimen-
sions are evident. At level 5 one can start distinguish-
ing the object’s gross body parts. At level 6, the major
body parts and joints are well localized and can be reli-
ably detected. The higher (finer) levels of the hierarchy
can bring some additional information for detailed re-
covery of small body parts such as hands and fingers.

To robustly identify the foreground object’s major
body parts (e.g. torso, legs, arms), one can utilize levels
4, 5, and 6 by fitting a hierarchical model reflecting the
data detail, i.e. model complexity increases as more
detailed information becomes available.

At its first level the model might aim only at the
torso, so fitting e.g. a single plane patch based den-
sity should suffice. Once the torso’s position, size and
orientation are estimated, the model at its second level
inherits the torso and additionally attempts to fit legs
and arms using level 5 of the occupancy map. When
the gross body parts are estimated, the model on the
next level inherits the previous estimation and refines
the detail of the foreground object by splitting parts
into sub-parts, e.g. an arm into shoulder and forearm.
This way, the most elaborate level of the hierarchy will
have a good initial guess and thus less chance to get
stuck in a local minima.

Peculiarities of initializing the current level from the
previous level fit are often application specific and are
determined by a particular choice of the constituent
densities. As a heuristic, one can look at the difference
between the current occupancy map and the occupancy
map produced by the previous level fit to determine
what wasn’t covered by the lower level model; then
the sub-parts can be initialized to compensate for that
discrepancy.

4.4 Fitting in a sequence

Suppose we have a sequence of occupancy maps con-
structed using a multi-perspective sequence. The hier-
archical fitting procedure can be used to fit a model to
the initial frame of a sequence. For the subsequent
frames of the same sequence one does not have to
run the whole hierarchical procedure again. Instead,
one can attempt to track the model over the multi-
perspective sequence (via e.g. Kalman filtering) utiliz-
ing the top level model(s) from the previous step(s).
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Figure 4. A source multi-perspective snapshot with corresponding silhouettes (left), and a volumetric reconstruction

hierarchy (right)

More robust trackers may utilize several levels of the
model hierarchy and employ the full hierarchy fitting
only for the boot strapping step.

5 Experiments

For our experiments we used both synthetic and real
occupancy maps. Synthetic maps were constructed by
thresholding model densities while volumetric recon-
structions of real human body figures were obtained in
the Keck Lab using the real-time volume reconstruc-
tion technique.

5.1 Density based model of a human body

To utilize the hierarchical fitting mechanism, we
employed a three-level hierarchical model. The first
(coarsest) level models only the torso represented via
an asymmetric soap-bar-like density function described
below. The second level of the model brings head, legs
and arms into the picture represented via tube-like den-
sities also described in the next subsection. The third
level refines the model further by splitting arms and
legs in to their corresponding sub-parts using re-scaled
tube densities.

5.1.1 Model building blocks

Simplest of all is the model of the head h(x) =
H?zl hj (x;), where h; is some bell-shaped density (de-
scribed below). In our experiments we used e (@),

An asymmetric density bar used for the torso is
given by t(x) = H3=1 tj (x;), where t1 o are plateau-
based densities and t3 is an asymmetric bell-shaped den-
sity.

A bell-shaped density is any unimodal rapidly de-
caying density function b whose graph has the shape
of a ”bell” usually centered at 0, and not necessarily
symmetric, i.e. LOOO b(z)dx # [;° b(x)dz, in general.
In our experiments, we used

v Jbu((2=-92x) <0
t;,»(m,s)-{ b (sx) x>0
where b is some symmetric bell-shaped density (we used

e‘”z), and 0 < s < 2 (we used s = 0.7)
A plateau-based density is given by

b(z+r) < —r
plzr)=4 1 —r<z<r
b(z—r) T>r

where b is some bell-shaped density with max, b (z) =

b(0) = 1.



Arms, legs and their sub-parts are represented by
density tubes. A tube density is a density u(x) =
H?Zl u; (z;), where u; is a plateau-based density, and
ug,3 are (asymmetric) bell-shaped densities.

5.1.2 Cumulative density functions

The density building blocks described above are used
to create so called atomic densities that usually corre-
spond to the basic (non-subdividable) body parts such
as torso. Each level in the model hierarchy is repre-
sented by a cumulative density function. A cumulative
density function is given by

f(x;0) :Zfi (x;6)

where each f; is a member density. Each member can
either be an atomic density or a cumulative density of
a complex (multimember) part, in which case it in turn
is computed using the above formula with respect to its
own sub-members. Since densities are specified each in
its own coordinate system, they all are responsible for
the appropriate world-to-local coordinate transforma-
tions.

5.1.3 Model fitting concerns and details

The final optimization procedure has to observe the
feasibility of body parts’ positions and orientations via
constraints on the model parameter vector 8, which is
different for every level of the model hierarchy. The ini-
tial level is characterized by just six degrees of freedom
for the torso. Level 2 needs to additionally describe ro-
tation angles of arms (6) and legs (4), and level 3 adds
four DOF more (by splitting arms and legs) resulting in
the total of 20 parameters. We prevent infeasible body
configurations by constraining the body part rotation
angles, which translates into specifying the appropriate
ranges for the parameters in 6.

As we noted before, our cumulative density func-
tion needs to satisfy the cumulative consistency condi-
tion (5). To enforce it, we punish excessive density by
augmenting our cumulative density function f (x;8) as

f(x;0) = c(f (x;0)), where

C@%={y+é

1+4(y—1)2

0<y<l1
y>1

As we can see in fig.5, the resulting function behaves

like a shifted source density as long as the latter does

not exceed 1, otherwise it sharply decreases causing low

values in the objective function: F (0) = [ f (x,8) dVx.
1%

Figure 5. Augmenting the cumulative density

5.2 Results

The density models were fitted in the coarse-to-fine
fashion with level 1 of the model being fit to a four-level
deep octree. Below we give the results of model fitting.
For both synthetic and real-world fits, the initial model
was told approximate up and front directions. The rest
of the parameters were estimated automatically. The
final density fields were rendered as occupancy maps
created by thresholding the density function.

Synthetic fits were invariably nearly perfect. Figure
6 shows source occupancy maps (top row) and their
density based model fits (bottom row). As we can see
at this scale of rendering, the model volumes are virtu-
ally indistinguishable from their source counterparts.
For these experiments, the top level fits were done us-
ing source octrees six levels deep. The final rendering,
however, was done with the octrees of depth eight.

Figure 7 presents density based model fits (bottom)
into occupancy maps of a real person making pointing
gestures (top). As one can see, the model captures the
body shape and posture correctly (for the given reso-
lution) and provides a reliable way to both locate and
identify the body parts and describe the person’s pos-
ture. The model did not aim to capture fine details
of the human body, and thus hands and feet were not
modeled, but could be by introducing as yet another
level in the model hierarchy. Note also that applica-
tions targeting higher precision than this will have to
refine density building blocks to reflect asymmetries in
body parts and provide additional fine constraints on
body part movements.

6 Conclusion

In this paper we proposed a generic and efficient
method for 2D and 3D shape estimation via density
fields. Our method models shape as a density map and
uses the notion of density to fit a model to a rapidly
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Figure 6. Synthetic images (top) and fitted density models (bottom)

Figure 7. Fitting density models (bottom) to real images (top)




computed occupancy map of the foreground object.
We introduce a system for generating and manipulat-
ing complex density-based models out of application-
specific density building blocks, and show how to use
these models for both object recognition and shape vi-
sualization.

The major contributions of our method are in

e providing a generic density-based shape modeling
framework based on mass conservation,

e utilizing hierarchical model fitting to hierarchical
segmentation data (quad- or oct-trees),

e allowing shape modeling to any precision via cus-
tom density building blocks.

Our approach differs from similar ones by

e producing models with relatively low number of
degrees of freedom,

e efficiently working with volumetric or areal seg-
mentation data,

e easily generalizing to any dimensions.

We consider this method to be important to the fol-
lowing areas:

e multi-perspective recognition and tracking of non-
rigid articulated objects,

e physically realistic modeling and visualization,

e flexible and efficient shape representation.

Our future course of research will aim at extending
the method for precise 3D model tracking, movement
and gesture analysis. Besides that, the method has a
potential to be adapted for such areas as robust seg-
mentation in 3D non-rigid imaging by departing from
binary occupancy maps to the domain of gray-level 3D
images (and sequences thereof). It also can be consid-
ered as a tool for 3D (or N-D) cluster analysis and data
compression via e.g. extending this method to handle
non-parametric distributions.
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